首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型 f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为一12. (1)求a,b. (2)用正交变换化f(x1,x2,x3)为标准型.
设二次型 f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为一12. (1)求a,b. (2)用正交变换化f(x1,x2,x3)为标准型.
admin
2018-11-20
78
问题
设二次型
f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
,(b>0)其中A的特征值之和为1,特征值之积为一12.
(1)求a,b.
(2)用正交变换化f(x
1
,x
2
,x
3
)为标准型.
选项
答案
[*] 由条件知,A的特征值之和为1,即a+2+(一2)=1,得a=1. 特征值之积=一12,即|A|=一12,而 |A|=[*]=2(一2一b
2
) 得b=2(b>0).则 [*] (2)|λE—A|=[*]=(λ一2)
2
(λ+3), 得A的特征值为2(二重)和一3(一重). 对特征值2求两个单位正交的特征向量,即(A一2E)X=0的非零解. [*] 得(A一2E)X=0的同解方程组x
1
一2x
3
=0,求出基础解系η
1
=(0,1,0)
T
,η
2
=(2,0,1)
T
.它们正交,单位化:α
1
=η
1
,α
2
=[*] 方程x
1
一2x
3
=0的系数向量(1,0,一2)
T
和η
1
,η
2
都正交,是属于一3的一个特征向量,单位化得 [*] 作正交矩阵Q=(α
1
,α
2
,α
3
),则 [*] 作正交变换X=QY,则它把f化为Y的二次型f=2y
1
2
+2y
2
2
一3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/kfW4777K
0
考研数学三
相关试题推荐
随机变量(X,Y)的联合密度函数为f(x,y)=求(x,y)落在区域x2+y2≤内的概率.
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
利用变换x=arctant将方程cos4x+cos2x(2一sin2x)+y=tanx化为y关于t的方程,并求原方程的通解.
10件产品中4件为次品,6件为正品,现抽取2件产品.求第一件为正品,第二件为次品的概率;
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
设A是三阶实对称矩阵,且A2+2A=0,r(A)=2.求A的全部特征值;
已知齐次线性方程组同解,求a,b,c的值。
设总体X的概率密度f(x)=其中a是常数,λ>0是未知参数,从总体X中抽取样本X1,X2,…,Xn。求:(Ⅰ)常数a;(Ⅱ)求λ的最大似然估计量。
随机试题
工程咨询单位的主要营销手段有()。
资金的时间价值是客观存在的,生产经营的一项基本原则就是充分利用资金的时间价值并最大限度地获得其时间价值,这就要求()。
下列关于投资型保险产品的表述,正确的是()。
登记账簿必须以()为依据,并定期进行结账、对账。
一居民楼内电线的负荷只能允许同时使用6台空调。现有8户人家各安装了一台空调。问在一天(24小时)内,平均每户(台)最多可使用空调多少小时?()
在美国所有捐献的血液中有45%是O型血;由于O型血适用于任何人,所以在没有时间测定患者是何种血型的危急时刻,O型血是不可缺少的。O型血是唯一可与其他任何血型相融的血型,所以它可以输给任何受血者。然而正是由于这一特殊用途,O型血长期处于短缺状态。如果上文陈述
菱形中的较小的内角是60°.(1)菱形的一条对角线与边长相等(2)菱形的一条对角线是边长的倍
用高级语言编写的程序称之为()。
ThefinalstepofSQ3Risrevision.Revisionshouldnotberegardedassomethingtobeundertakenjustbeforeexaminations.【76】O
【B1】【B17】
最新回复
(
0
)