首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 的系数矩阵为A= 设Mi(i=1,2,…,n)是A中划去第i列所得到的n-1阶子式。证明: (Ⅰ)(M1,-M2,…,(-1)n-1Mn)是方程组的一个解向量; (Ⅱ)如果A的秩为n-1,则方程组的所有解向量是(M1,-M2,…,(-1
设齐次线性方程组 的系数矩阵为A= 设Mi(i=1,2,…,n)是A中划去第i列所得到的n-1阶子式。证明: (Ⅰ)(M1,-M2,…,(-1)n-1Mn)是方程组的一个解向量; (Ⅱ)如果A的秩为n-1,则方程组的所有解向量是(M1,-M2,…,(-1
admin
2019-05-14
54
问题
设齐次线性方程组
的系数矩阵为A=
设M
i
(i=1,2,…,n)是A中划去第i列所得到的n-1阶子式。证明:
(Ⅰ)(M
1
,-M
2
,…,(-1)
n-1
M
n
)是方程组的一个解向量;
(Ⅱ)如果A的秩为n-1,则方程组的所有解向量是(M
1
,-M
2
,…,(-1)
n-1
M
n
)的倍数。
选项
答案
(Ⅰ)作n阶行列式 D
i
=[*],i=1,2,…,n-1。 因为D
i
的第一行与第i+1行是相同的,所以D
i
=0。 D
i
的第一行元素的代数余子式依次为M
1
,-M
2
,…,(-1)
n-1
M
n
,将D
i
按第一行展开,得 a
i1
M
1
+a
i2
(-M
2
)+…+a
in
[(-1)
n-1
M
n
]=0,(i=l,2,…,n-1), 这说明(M
1
,-M
2
,…,(-1)
n-1
M
n
)满足第i(i=1,2,…,n-1)个方程,故它是方程组的一个解。 (Ⅱ)因为R(A)=n-1,所以方程组的基础解系所含解向量的个数为n-(n-1)=1,同时因为R(A)=n-1,说明A中至少有一个(n-1)阶子式≠0,即M
1
,M
2
,…,M
n
不全为0,于是(M
1
,-M
2
,…,(-1)
n-1
M
n
)是方程组的一个非零解,它可作为方程组的一个基础解系。故方程组的解都是(M
1
,-M
2
,…,(-1)
n-1
M
n
)的倍数。
解析
转载请注明原文地址:https://kaotiyun.com/show/ki04777K
0
考研数学一
相关试题推荐
设f(x)是周期为2的周期函数,它在区间(一1,1]上定义为则f(x)的傅里叶级数在x=1处收敛于___________。
计算下列三重积分:(Ⅰ)I=(x+y+z)dV,Ω是由x2+y2≤z2,0≤z≤h所围的区域;(11)I=(x2+y2)dxdydz,其中Ω是由曲线(0≤y≤z,a>0,a≠1)绕z轴旋转一周所成的曲面与平面z=a2所围成的区域。
设区域D=t(x,y)|x2+y2≤1,x≥0},计算二重积分I=。
设F(u,v)有连续偏导数,且满足≠0,其中a,b,c≠0为常数,并有曲面S:F(cχ-az,cy-bz)=0,求证:(Ⅰ)曲面S上点处的法线总垂直于常向量;(Ⅱ)曲面S是以г:=0,为准线.母线平行于l=(a.b.c)的柱面.
设f(χ,y)=(Ⅰ)求(Ⅱ)f(χ,y)在点(0,0)处是否可微?为什么?若可微则求df|(0,0).
求下列极限:(Ⅰ)(Ⅱ),其中常数a≠0.
设α是n维列向量,已知αTα阶矩阵A=E-ααT,其中E为n阶单位矩阵,证明矩阵A不可逆.
设n阶矩阵A的各行元素之和均等于2,且满足A2+kA+6E=0,其中E为n阶单位矩阵,则参数k=_______.
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果总体X服从正态分布N(0,σ2),试证明:协方差Cov(X1,S2)=0.
设函数则f’(x)的零点个数为
随机试题
女性,31岁,发现“风湿性瓣膜病”2年。2周前因感冒出现呼吸困难,咳嗽,不能平卧。查体:半卧位,颈静脉充盈,双肺底湿啰音。心率127次/分,心房颤动,可闻开瓣音,心尖部舒张期杂音,肝肋下0.5cm,下肢轻度水肿以下哪项结果与病情不符合
分泌型IgA单体数为
痉证的病理变化为
主要通过降低cGMP含量发挥作用的平喘药是主要通过稳定肥大细胞膜抑制过敏介质的释放而发挥作用的是
在建筑工程、招标过程中,评标小组应由()组织。
()是负刑事责任的依据。
Whatifarchitectscouldbuildlivingsystemsratherthanstaticbuildings—dynamicstructuresthatmodifytheirinternalande
有以下程序:main(){inta=1,b=3,c=5,*p;int*p1=&a,*p2=&b,*p3=&c;*p=*p1*(*p2);printf("%d\n",*p);}执行后的输出结果是()。
Let’shopehedoesnotbring______girlfriendofhis!
Theconceptofpersonalchoiceinrelationtohealthbehaviorsisanimportantone.Anestimated90percentofallillnessmayb
最新回复
(
0
)