首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足∫01f(x)dx=0,∫01xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
设f(x)在[0,1]上连续,且满足∫01f(x)dx=0,∫01xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
admin
2019-02-23
85
问题
设f(x)在[0,1]上连续,且满足∫
0
1
f(x)dx=0,∫
0
1
xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
选项
答案
令F(x)=∫
0
x
f(t)dt,G(x)=∫
0
x
F(s)ds,显然G(x)在[0,1]可导,G(0)=0,又 G(1)=∫
0
1
F(s)ds[*]sF(s)|
0
1
-∫
0
1
sar(s)=F(1)-∫
0
1
xf(s)ds=0-0=0, 对G(x)在[0,1]上用罗尔定理知,[*]∈(0,1)使得G’(c)=F(c)=0. 现由F(x)在[0,1]可导,F(0)=F(c)=F(1)=0,分别在[0,c],[c,1]对F(x)用罗尔定理知, [*]ξ
1
∈(0,c),ξ
2
∈(c,1),使得F’(ξ
1
)=f(ξ
1
)=0,F’(ξ
2
)=f(ξ
2
)=0,即f(x)在(0,1)内至少存在两个零点.
解析
为证f(x)在(0,1)内存在两个零点,只需证f(x)的原函数F(x)=∫
0
x
f(t)dt在[0,1]区间上有三点的函数值相等.由于F(0)=0,F(1)=0,故只需再考察F(x)的原函数G(x)=∫
0
x
F(s)ds,证明G(x)的导数在(0,1)内存在零点.
转载请注明原文地址:https://kaotiyun.com/show/tej4777K
0
考研数学二
相关试题推荐
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与z轴平行.
求满足初始条件y’’+2x(y’)2=0,y(0)=1,y’(0)=1的特解.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
求下列极限:
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点。
计算下列反常积分(广义积分)。
设λ为可逆方阵A的特征值,且x为对应的特征向量,证明:(1)λ≠0;(2)为A一1的特征值,且x为对应的特征向量;(3)为A*的特征值,且x为对应的特征向量.
某批产品中有口件正品,6件次品.(1)用放回抽样方式从中抽取n(n≤a+b)件产品,问其中恰有k(k≤n)件次品的概率p1;(2)用不放回抽样方式从中抽取n件产品,问其中恰有k(k≤n)件次品的概率p2;(3)依次将产品一件件取出,求第k次取出正品的概率p
设且f"(0)存在,求a,b,c。
随机试题
急性溶血性贫血时多见的是慢性溶血性贫血时多见的是
A.取不同部位粪便B.取黏液部分粪便C.取全部粪便,及时送检D.置培养管中,立即送检E.置于加温便盆内,连同便盆一起送检
关于散射线对照片影像的影响,正确的是
宏观经济管理的手段不包括()。
以下说法正确的是()。Ⅰ.利率风险是固定收益证券的主要风险Ⅱ.利率风险是非系统性风险Ⅲ.同一种类型的债券,长期债券利率比短期债券高Ⅳ.股票的收益率一般高于债券
由于商品流通企业的预测大多是从本企业角度出发的,因此商品流通企业的预测侧重于()。
手机的无线充电技术日趋成熟,方便了我们的生活。下列关于无线充电技术的说法不正确的是:
共和后期,罗马国家最高的行政和监督机构是()。
劳动成为商品的基本条件是
Someinsectspassthroughtheirentirelifecycles,fromeggtoadult,______daysorweeks.
最新回复
(
0
)