首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足∫01f(x)dx=0,∫01xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
设f(x)在[0,1]上连续,且满足∫01f(x)dx=0,∫01xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
admin
2019-02-23
76
问题
设f(x)在[0,1]上连续,且满足∫
0
1
f(x)dx=0,∫
0
1
xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
选项
答案
令F(x)=∫
0
x
f(t)dt,G(x)=∫
0
x
F(s)ds,显然G(x)在[0,1]可导,G(0)=0,又 G(1)=∫
0
1
F(s)ds[*]sF(s)|
0
1
-∫
0
1
sar(s)=F(1)-∫
0
1
xf(s)ds=0-0=0, 对G(x)在[0,1]上用罗尔定理知,[*]∈(0,1)使得G’(c)=F(c)=0. 现由F(x)在[0,1]可导,F(0)=F(c)=F(1)=0,分别在[0,c],[c,1]对F(x)用罗尔定理知, [*]ξ
1
∈(0,c),ξ
2
∈(c,1),使得F’(ξ
1
)=f(ξ
1
)=0,F’(ξ
2
)=f(ξ
2
)=0,即f(x)在(0,1)内至少存在两个零点.
解析
为证f(x)在(0,1)内存在两个零点,只需证f(x)的原函数F(x)=∫
0
x
f(t)dt在[0,1]区间上有三点的函数值相等.由于F(0)=0,F(1)=0,故只需再考察F(x)的原函数G(x)=∫
0
x
F(s)ds,证明G(x)的导数在(0,1)内存在零点.
转载请注明原文地址:https://kaotiyun.com/show/tej4777K
0
考研数学二
相关试题推荐
求
求满足初始条件y’’+2x(y’)2=0,y(0)=1,y’(0)=1的特解.
设z=z(x,y)是由f(y-z,yz)=0确定的,其中f对各个变量有连续的二阶偏导数,求
求下列变限积分函数的导数:(Ⅰ)F(χ)=etdt,求F′(χ)(χ≥0);(Ⅱ)设f(χ)处处连续,又f′(0)存在,F(χ)=∫1χ[∫0tf(u)du]dt,求F〞(χ)(-∞<χ<-∞).
某闸门的形状与大小如图2.11所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y’|x=0=1的解为y=________.
求下列幂级数的收敛域:
设f(x)是周期为2的周期函数,且在一个周期内的表达式为将f(x)展开成傅里叶级数,并求级数
某厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2;销售量分别为q1和q2;需求函数分别为q2=24-0.2p1,q2=10-0.05p2总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的
设z=f(χ,y)=χ2arctan-y2arctan,则=_______.
随机试题
关于自愿原则,下列说法正确的有()
关于卵巢的描述,下列哪项是正确的
抽动障碍气郁化火证的治法是
下列关于叠图法说法正确的有()。
港口工程建设项目开工应具备的条件包括()。
已知年名义利率为10%,每日计息1次,按复利计息,则年有效利率为()。
股票购回,会产生下列影响()。
文化影响着教育的______、课程内容、育人模式和历史传统。
2015年,我国快递业务量完成206.7亿件,实现业务收入2770亿元。全年同城快递业务量完成54亿件,同比增长52.3%;实现业务收入400.8亿元,同比增长50.7%。全国异地快递业务量完成148.4亿件,同比增长47.1%;实现业务收入1512.9亿
Theresourcesofthelibrarycanbehelpfulevenwhenwearedoingsomethingveryinformal,suchastryingtodeviseabetterwa
最新回复
(
0
)