首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2)上的最大值和最小值.
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2)上的最大值和最小值.
admin
2020-03-16
97
问题
求f(x,y)=x+xy一x
2
一y
2
在闭区域D={(x,y)|0≤x≤1,0≤y≤2)上的最大值和最小值.
选项
答案
这是闭区域上求最值的问题.由于函数f(x,y)=x+xy一x
2
一y
2
在闭区域D上连续,所以一定存在最大值和最小值. 首先求f(x,y)=x+xy—x
2
一y
2
在闭区域D内部的极值: 解方程组[*].由 g(x,y)=(f"
xy
)
2
一f"
xx
f"
yy
=一3 得f(x,y)=x+xy一x
2
—y
2
在闭区域D内部的极大值[*]. 再求f(x,y)在闭区域D边界上的最大值与最小值: 这是条件极值问题,边界直线方程即为约束条件. 在x轴上约束条件为y=0(0≤x≤1),于是拉格朗日函数为 F(x,y,λ)=x+xy—x
2
一y
2
+λy, 解方程组[*] 在下面边界的端点(0,0),(1,0)处f(0,0)=0,f(1,0)=0,所以,下面边界的最大值为[*],最小值为0. 同理可求出: 在上面边界上的最大值为一2,最小值为一4; 在左面边界上的最大值为0,最小值为一4; 在右面边界上的最大值为[*],最小值为一2. 比较以上各值,可知函数f(x,y)=x+xy一x
2
一y
2
在闭区域D上的最大值为[*],最小值为一4.
解析
转载请注明原文地址:https://kaotiyun.com/show/kz84777K
0
考研数学二
相关试题推荐
设f(u,υ)具有二阶连续偏导数,且满足fu’(u,υ)+fυ’(u,υ)=uυ,求y=e一2xf(x,x)所满足的一阶微分方程,并求其通解.
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b,试证:在(a,b)内存在ξ,使得
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
设曲线y=a(a>0)与曲线y=lnχ在点(χ0,y0)处有公共的切线,求:(1)常数a及切点坐标;(2)两曲线与χ轴所围成的平面图形绕χ轴旋转所得旋转体的体积.
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
[2005年]用变量代换x=cost(0<t<π)化简微分方程(1-x2)y"一xy′+y=0,并求其满足y∣x=0=1,y′∣x=0=2的特解.
设φ(x)是以2π为周期的连续函数,且Φ’(x)=φ(x),Φ(0)=0.方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式f(1+sinχ)-3f(1-sinχ)=8χ+α(χ)其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6
设f(x)是(-∞,+∞)内的偶函数,并且当X∈(-∞,0)时,有f(x)=x+2,则当x∈(0,+∞)时,f(x)的表达式是[].
随机试题
下列有关文学常识的表述,不正确的一项是()
肌梭感受器兴奋后的效应是
甲、乙企业于2010年4月1日订立一份标的额为100万元的买卖合同,根据合同规定,甲企业于2010年4月10日交付货物,乙企业采取分期付款支付方式,付款期限为4年。2011年4月10日,乙企业未按照合同约定支付第一期货款25万元。根据我国《合同法》的规定,
必须采用工程量清单计价的建设工程有()。
文明是人类社会的基本属性,是我们党积极倡导的社会主义核心价值理念,是当代中国的核心价值追求之一。文明在引领和指示当代中国的发展进步方面具有十分重要的地位,发挥着十分重要的作用。_________。这迫切需要进一步廓清文明的要义,深化对文明及文明建设的思想认
主题统觉测验(TAT)能用来测量()。
()用于将显卡、声卡、网卡和硬盘控制器等高速外围设备直接挂在CPU总线上。
WhatwillthewomandoonFriday?
BustaMyth,GetaBenefitFewsubjectsharbormoremythsandmisconceptionsthannutrition.Someofthemostcommon:"L
Ironproductionwasrevolutionizedintheearlyeighteencenturywhencokewasfirstused【B1】______ofcharcoalforrefiningiro
最新回复
(
0
)