首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)二阶可导且f(x),f"(x)在(0,+∞)上有界,求证:f’(戈)在(0,+∞)上有界.
设f(x)在(0,+∞)二阶可导且f(x),f"(x)在(0,+∞)上有界,求证:f’(戈)在(0,+∞)上有界.
admin
2018-06-15
62
问题
设f(x)在(0,+∞)二阶可导且f(x),f"(x)在(0,+∞)上有界,求证:f’(戈)在(0,+∞)上有界.
选项
答案
按条件,联系f(x),f"(x)与f’(x)的是带拉格朗日余项的n阶泰勒公式. [*]s>0,h>0有 f(x+h)=f(x)+f’(x)h+[*]f"(ξ)h
2
, 其中ξ∈(x,x+h).特别是,取h=1,ξ∈(x,x+1),有 f(x+1)=f(x)+f’(x)+[*]f"(ξ),即f’(x)=f(x+1)-f(x)-[*]f"(ξ). 由题设,|f(x)|≤M
0
,|f"(x)|≤M
2
([*]x∈(0,+∞)),M
0
,M
2
为常数,于是有 |f’(x)|≤|f(x+1)|+|f(x)|+[*]|f"(ξ)|≤2M
0
+[*]M
1
([*]x>0), 即f’(x)在(0,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/lHg4777K
0
考研数学一
相关试题推荐
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3.①证明α,Aα,A2α线性无关.②设P=(α,Aα,A2α),求P-1AP.
设(1)求证:若b>1,则发散;(2)当b=1时,试举出可能收敛也可能发散的例子.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上.任意一点P(x,y)作该曲线的切线及到z轴的垂线,上述两直线与z轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S
已知平面区域D={(x,y)|x2+y2≤1),L为D的边界正向一周.证明:
设光滑曲面∑所围闭域Ω上,P(x,y,z)、Q(x,y,z)、R(x,y,z)有二阶连续偏导数,且∑为Ω的外侧边界曲面,由高斯公式可知的值为________
设f(x;t)=((x-)(t-1)>0,x≠t),函数f(x)由下列表达式确定,求出f(x)的连续区间和间断点,并研究f(x)在间断点处的左右极限.
求幂级数的收敛域,并求其和函数.
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x2与直线y=x所围成的区域D1内的概率.
设L是区域D:x2+y2≤-2x的正向边界,则I=∫L(x3-y)dx+(x-y3)dy=___________.
设f(x),φ(x)在点x=0的某邻域内连续,且x→0时,f(x)是φ(x)的高阶无穷小,则x→0时,∫0xf(t)sintdt是∫0xtφ(t)dt的()无穷小.
随机试题
Inonesingleyear,ratseattotimes______weight.
利用功能成本法进行产品的功能价值的分析时,一般功能无需改进的是( )。
()《海关估价协议》中确立海关估价的方法。
甲公司因扩大经营规模需要筹集长期资本,有发行长期债券、发行优先股、发行普通股三种筹资方式可供选择。经过测算,发行长期债券与发行普通股的每股收益无差别点为120万元,发行优先股与发行普通股的每股收益无差别点为180万元。如果采用每股收益无差别点法进行筹资方式
甲公司向乙公司订购设备一套。根据合同约定,2018年4月1日,甲公司签发一张以乙公司为收款人、金额为100万元的银行承兑汇票,承兑人为A银行,到期日为2018年7月1日。2018年4月4日,乙公司持有甲公司签发的银行承兑汇票不慎丢失,后被离职员工
关于合并范围,下列说法中错误的是()。
()是企业方针目标管理的基础环节。
Thebirthdayphenomenonfoundamongsoccerplayersismentionedto______.Ericssonandhiscolleaguesbelievethat______.
在Word中,查找的快捷键为()键。
文件d:\city.txt的内容如下:BeiJingTianJinShangHaiChongQing编写如下事件过程:PrivateSubForm_Click()Dim
最新回复
(
0
)