首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求矩阵A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求矩阵A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2018-04-08
51
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
(Ⅰ)求矩阵A;
(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
(Ⅰ)由题意知Q
T
AQ=Λ,其中 [*] 则A=QΛQ
T
。 设Q的其他任一列向量为(x
1
,x
2
,x
3
)
T
,因为Q为正交矩阵,所以 [*] 即x
1
+x
3
=0,其基础解系含两个线性无关的解向量,即为 α
1
=(-1,0,1)
T
,α
2
=(0,1,0)
T
, 把α
1
单位化 [*] (Ⅱ)证明:因为(A+E)
T
=A
T
+E=A+E,所以A+B为实对称矩阵,又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,且都大于0,因此A+B为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/llr4777K
0
考研数学一
相关试题推荐
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性相关;
已知ξ1,ξ2是方程(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
已知α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是()
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f"(z)|≤b,其中a,b都是非负常数,c是(0,1)内任一点,证明|f’(c)|≤2a+.
设随机变量X1,X2,X3,X4相互独立,且都服从正态分布N(0,σ2),如果二阶行列式Y=,则σ2=________。
已知三元二次型XTAX的平方项系数全为0,设α=[1,2,-1]T且满足Aα=2α。求该二次型表示式;
设随机变量X在[0,π]上服从均匀分布,求(1)Y=sinX的概率密度;(2)E(Y)和D(Y)。
设A,B,C是三个随机事件,P(ABC)=0,且0<P(C)<1,则一定有()
已知三阶矩阵A满足A3=2E,若B=A2+2A+E,证明B可逆,且求B-1.
随机试题
SQL语言是关系型数据库系统典型的数据库语言,它是()
肠内营养发生腹胀、腹泻与哪项无关
男性,35岁,车祸后2小时,伤后曾有昏迷约20分钟,现诉头痛,恶心,未呕吐。GCS评分:10分,头皮无明显裂伤。左侧鼻孔可见持续有五色透明液体流出。CT:骨窗像左颞可见一线形骨折,左颞可见一新月形薄层血肿,量约20ml,颅内可见少量气体
女性,55岁。近一个月来,头痛、乏力、早醒、坐立不安、常担心家人会出事,怀疑自己得了不治之症,给家庭带来麻烦,悲观失望。最可能的诊断是
男性,20岁,发热2周,体温38℃一39℃,检查皮肤散在紫癜,颈部及腋下可触及0.5cm×1.5cm大小淋巴结5-6个,脾肋下3cm,血红蛋白85g/L,白细胞10×l09/L,血小板25×109/L。
天然大理石板材按板材的加工质量和外观质量分为()级。
压强和温度会引起密度的变化,假定其他条件相同的情况下,下列相关的说法不正确的是()。
村民委员会和居民委员会的性质是( )。
计算机主要技术指标通常是指()。
A、Sheonlyfocusesonfashionandboys.B、Sheonlyfocusesonherstudy.C、Sheonlyfocusesonherfather.D、Sheonlyfocuseson
最新回复
(
0
)