首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求矩阵A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求矩阵A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2018-04-08
77
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
(Ⅰ)求矩阵A;
(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
(Ⅰ)由题意知Q
T
AQ=Λ,其中 [*] 则A=QΛQ
T
。 设Q的其他任一列向量为(x
1
,x
2
,x
3
)
T
,因为Q为正交矩阵,所以 [*] 即x
1
+x
3
=0,其基础解系含两个线性无关的解向量,即为 α
1
=(-1,0,1)
T
,α
2
=(0,1,0)
T
, 把α
1
单位化 [*] (Ⅱ)证明:因为(A+E)
T
=A
T
+E=A+E,所以A+B为实对称矩阵,又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,且都大于0,因此A+B为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/llr4777K
0
考研数学一
相关试题推荐
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
已知方程组与方程组是同解方程组,试确定参数a,b,c.
设函数u(x,y)=φ(x+y)+φ(x—y)+,其中φ具有二阶导数,ψ具有一阶导数,则必有
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.求D的面积A;
求极限
已知四元齐次线性方程组(i)的解全是四元方程(ii)x1+x2+x3=0的解。求齐次方程(ii)的通解。
计算线积分(y2+z2)dx+(z2+x2)dy+(x2+y2)dz,其中c是曲线x2+y2+z2=2Rx,x2+y2+z2=2ax(z>0,0<a<R),且按此方向进行,使它在球的外表面上所围区域∑在其左方。
设随机变量X,Y独立,且E(X),E(Y)和D(X),D(Y)存在,则下列等式中不成立的是(),下列表示式中的a,b均为常数。
设f(x)在[0,b]可导,f’(x)>0(x∈(0,b)),t∈[0,b],问t取何值时,图2—3中阴影部分的面积最大?最小?
设f(x)连续,且求f(x).
随机试题
天山向日葵 张抗抗从天山下来,已是傍晚时分,阳光依然炽烈,亮得晃眼。从很远的地方就望见了那一大片向日葵海洋,像是天边扑腾着一群金色羽毛的大鸟。车渐渐驶近,你喜欢
A.患侧眼球固定,微外突B.患眼上肌麻痹,眼球固定,后突眼性视力麻痹C.先视力障碍后眼外肌麻痹D.先眼外肌麻痹后视力障碍E.眼球突出鼻咽癌出现垂体蝶窦综合征的临床表现是
构成医患之间信任关系的根本前提是
具有广谱抗心律失常作用阵发性室上性心动过速首选
A.肺炎链球菌B.乙型溶血性链球菌C.金黄色葡萄球菌D.流感嗜血杆菌E.肠致病型大肠埃希菌常引起婴儿腹泻
下列选项中,属于施工阶段监理工作主要任务的有()。
下列各项,应通过“固定资产清理”科目核算的有()。
一个运动项目,锦标和荣誉是不可能与对手共享的,但通过竞争达到技术交流,可以让人深切感受其中的文化内涵。中国乒乓球需要的不是培养对手向自己挑战,也不是刻意限制自身优势,而是在交流融合中,共同丰富乒乓文化。不必“养狼”,胜于“养狼”,这是对自己、对对手、对乒乓
下列说法中错误的一项是______。
StevewantstotraveltoLondonbytraininsteadofbusbecause
最新回复
(
0
)