首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
admin
2015-06-30
52
问题
设非零n维列向量α,β正交且A=αβ
T
.证明:A不可以相似对角化.
选项
答案
令λ为矩阵A的特征值,X为λ所对应的特征向量,则AX=λX,显然A
2
X=λ
2
X,因为α,β正交,所以A
2
=αβ
T
.αβ
T
=O,于是λ
2
X=0,而X≠0,故矩阵A的特征值为 λ
1
=λ
2
=…=λ
n
=0. 又由α,β都是非零向量得A≠O, 因为r(OE-A)=r(A)≥1,所以n-r(0E-A)≤n-l
解析
转载请注明原文地址:https://kaotiyun.com/show/lr34777K
0
考研数学二
相关试题推荐
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。若3维非零列向量α与ξ3正交,证明α是对应于λ1=λ2=1的特征向量。
设函数z=f(x,y)(xy≠0)满足=y2(x2-1),则dz=________.
设平面区域D={(x,y)|(x-1)2+(y-1)2≤2},I1=(x+y)dδ,I2=ln(1+x+y)dδ,则下列结论正确的是()。
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为().
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在,n维非零列向量α,β,使得A=αβT.
向量组α1,α2,…,αm线性无关的充分必要条件是().
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求A的特征值和特征向量;
设f(x)是周期为5的可导函数,又=1,则曲线y=f(x)在点(6,f(6))处的切线的方程为().
随机试题
WhenIwaswalkingdownthestreettheotherday,Ihappenedto【C1】______asmallbrownleatherpurselyingonthesidewalk.I【C2
患者女性,30岁,撞击后致单纯左肩关节前方脱位,1小时后来医院就诊,X线片未见合并骨折征象。此时应首先采取哪种治疗措施
A.联苯胺B.氯甲醚C.石棉D.砷E.焦炉逸散物我国职业病名单中,列入职业肿瘤,可引起间皮瘤的毒物是
在预防唇腭裂发生的措施中,哪项是错误的
肛门周围脓肿的主要症状是
区域火灾风险评估的评估内容有哪些?
2014年10月20日,甲向乙购买一批原材料,价款为30万元。因乙欠丙30万元,故甲与乙约定由乙签发一张甲为付款人、丙为收款人的商业汇票。乙于当日依约签发汇票并交付给丙,该汇票上未记载付款日期。2014年11月15日,丙向甲提示付款时,甲以乙交货不符合合
随着儿童逐渐长大,他们往往在不考虑行为的外部结果的情况下,采纳身边他人优先考虑的事情和价值标准作为自己的接受他人所推崇的行为,这种现象称为动机的外化。()
近来,微博上流行一句“是中国人就转”的口号,这是用一面澎湃激昂的民族情怀大旗,迎风一展,遮住大众的眼睛,眼花缭乱间,既剥夺民众独立思考的能力,又________他人自由的意志。爱国主义是其廉价外衣,使人跟风盲从是其内在属性,看似强大逻辑的背后,实则是批判的
单纯涎石摘除术适用于()。
最新回复
(
0
)