首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
admin
2017-12-31
35
问题
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=0,得|aE-A|.|bE-A|=0,则|aE-A|=0或者|bE-A|=0.又由(aE-A)(bE-A)=0,得r(aE-A)+r(bE-A)≤n. 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n. 所以r(aE-A)+r(bE-A)=n. (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值. 方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(6E-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/jDX4777K
0
考研数学三
相关试题推荐
设矩阵A与B相似,其中求x和y的值;
设二次型f(x1,x2,x3)=x12+x22+ax32+2bx1x2—2x1x3+2x2x3(b<0)通过正交变换化成了标准形f=6y12+3y22一2y12。求a、b的值及所用正交变换的矩阵P。
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:A+B的特征值全大于a+b。
设有向量α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b—2,a+2b)T,β=(1,3,一3)T。试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3惟一地线性表示,并求出表示式;(
已知线性方程组a,b,c满足何种关系时,方程组仅有零解?
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量.且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
微分方程xdy=y(xy-1)dx的通解为__________.
设f(x)有连续导数,f(0)=0,f’(0)≠0,且当x→0时,F’(x)与xk是同阶无穷小,则k等于
微分方程一3y’+2y=2ex满足=1的特解为_____________.
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
随机试题
期中考试后,老师让同学们针对成绩进行反思总结。甲同学说:“一分耕耘一分收获,我这次考试考前进行了充分的复习,我尽了自己最大的努力。”乙同学说:“别人太强了,我太难了,我天生就不是学习的料,再怎么复习也没有用。”丙同学说:“我这次考得好,主要是因为复习的都考
弹性人力资源规划的重点是()
降钙素降低血钙和血磷的主要机制是
口腔颌面一般检查不包括以下哪种检查
银行业从业人员应当坚持同业间公平、有序竞争的原则,下列()行为采用了不正当竞争手段。
商业银行应当在接到核查通知的()个工作日内向征信服务中心作出核查情况的书面答复。
下列关于各类期权的说法,正确的有()。
2005年5月份全国基本型乘用车的产量是()。2006年5月份全国乘用车销量最大的车型是()。
说明:本题中指数的计算方法为:当年的数值与上一年数值的比乘以100。举例来说。假设第一年的数值为m,第二年的数值为n,则第二年的指数为100×(n/m)。假设1995年的国内生产总值为200亿,那么1996年的国内生产总值为()。
MedicineDirectionsTaketwotabletswithwarmwater,followedbyonetableteveryeighthours,asrequired.Formaximumnig
最新回复
(
0
)