首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是
admin
2020-02-27
52
问题
设n维向量α
1
,α
2
,…,α
s
的秩为r,则下列命题正确的是
选项
A、α
1
,α
2
,…,α
s
中任何r一1个向量必线性无关.
B、α
1
,α
2
,…,α
s
中任何r个向量必线性无关.
C、如果s>n,则α
s
必可由α
1
,α
2
,…,α
s-1
线性表示.
D、如果r=n,则任何n维向量必可由α
1
,α
2
,…,α
s
线性表示.
答案
D
解析
r(α
1
,α
2
,…,α
s
)=r
α
1
,α
2
,…,α
s
中一定存在r个向量线性无关,而任意r+1个向量必线性相关.
当向量组的秩为r时,向量组中既可以有r—1个向量线性相关,也可以有r个向量线性相关,故(A)、(B)均错误.例如向量α
1
,α
2
,α
3
,α
4
分别为
(1,0,0,0),(0,1,0,0),(0,0,1,0),(3,0,0,0),
其秩为3,其中α
1
,α
4
线性相关,α
1
,α
2
,α
4
也线性相关.该例说明,4维向量可以有2个向量线性相关,也可以有3个向量线性相关.但肯定有3个向量线性无关.
当s>n时,表明α
1
,α
2
,…,α
s
必线性相关,此时有α
i
可以由α
1
,…,α
i-1
,α
i+1
,…,α
s
线性表示,但α
s
不一定能由α
1
,…,α
s-1
线性表示.故(C)不正确.
若r(α
1
,α
2
,…,α
s
)=n,则对任何n维向量β必有r(α
1
,α
2
,…,α
s
,β)=n.故(D)正确.因此应诜(D).
转载请注明原文地址:https://kaotiyun.com/show/mCD4777K
0
考研数学三
相关试题推荐
计算二重积分其中D是由直线y=x,y=1,x=0所围成的平面区域.
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求
已知向量组α1=的秩为2,则t=________。
假设随机变量X与Y相互独立,且P{X=k}=(k=1,2,3),则a=___________,b=_________,Z=X+Y的分布律为_________.
方程组的通解是_________.
求幂级数的收敛域.
设α≥5且为常数,则k为何值时极限存在,并求此极限值.
设3阶对称阵A的特征值为λ1=1,λ2=-1,λ3=0;对应λ1,λ2的特征向量依次为p1=,求A.
证明n阶矩阵相似.
下列反常积分其结论不正确的是
随机试题
女孩,8岁,半月前有发热,体温38.6℃~39.8℃,稀水便,7~8次/H,一周后自愈。近2天感疲乏、头晕,晕厥一次。入院查面色苍白,脉缓而规则,血压65/40mmHg,心界扩大,心率50次/分,有大炮音。该患儿ECG检查的结果最有可能是
下列哪一项不是小肠吸收功能试验?
A.引吐法B.泻下法C.排出法D.油疗法E.平息法将腹内疾病尤其是赤巴病排出体外常用的方法是
一次支付复利系数可表示为( )。
建筑安装工程施工中生产工人的流动施工津贴属于()。【2007年考试真题】
2017年1月1日,A公司以每股10元的价格购入B上市公司(以下简称“B公司”)股票100万股,并由此持有B公司2%股权。投资前A公司与B公司不存在关联方关系。A公司将对B公司的该项投资作为以公允价值计量且其变动计入当期损益的金融资产核算。2018年1月1
递延年金具有如下特点()。
深化党和国家机构改革,是贯彻落实党的十九大决策部署的一个重要举措,是全面深化改革的一个重大动作,是推进国家治理体系和治理能力现代化的一次集中行动。短短一年多时间,十九届三中全会部署的改革任务总体完成,取得一系列重要理论成果、制度成果、实践成果。继续深化党和
会社に
InChina,whenyoumeetafriendinthestreet,youwouldsay,"Whereareyougoing?"or"Haveyoueatenyet?"ButinEnglandpeopled
最新回复
(
0
)