首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一个半径为1,高为3的开口圆柱形水桶,在距底为1处有两个小孔(小孔的面积忽略不计),两小孔连线与水桶轴线相交,试问该水桶最多能装多少水?
一个半径为1,高为3的开口圆柱形水桶,在距底为1处有两个小孔(小孔的面积忽略不计),两小孔连线与水桶轴线相交,试问该水桶最多能装多少水?
admin
2019-01-23
71
问题
一个半径为1,高为3的开口圆柱形水桶,在距底为1处有两个小孔(小孔的面积忽略不计),两小孔连线与水桶轴线相交,试问该水桶最多能装多少水?
选项
答案
本题是典型的应用型计算题,也就是首先要考生根据题目的文字表达,翻译出数学表达式,然后进行计算.需要指出的是,这种“动区域(也就是区域是随着某个参数变化而变化”的二重积分并不容易计算,而且本题还要求最值,需要用到导数工具.总之,本题是一道综合性较强的题目,这类问题的区分度在考研中一直很高. 首先,考生需要画出示意图.显然,水桶竖直放立时,装水至水面高度为1时,水将从两小孔流出,此时装水量为π×1
2
×1=π.所以要使水桶多盛水,通过水桶倾斜来增加盛水量.用数学语言来描述,即过两孔连线做一张动平面,问题就是求出动平面与桶底、桶壁围成的部分有最大的体积.如图1.6-4所示. [*] 将两孔A,B连线,过此连线的平面方程为z=ky+1,其中k为参数.设动平面与桶口唯一交点M的坐标为(0,1,t),代入平面方程,得k=t-1,则以t为参数的动平面的方程为S:z=(t-1)y+1. 于是平面S与面xOy的交线为[*].在倾斜水桶以改变盛水量时,要求此交线要始终在水桶底面上,故[*],于是可得参数t的取值范围是:2≤t≤3,盛水量为[*]其中D
t
=[*],且要求2≤t≤3. 于是问题就翻译如下: [*] V(t)单调增加,故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/mMM4777K
0
考研数学一
相关试题推荐
[*][*]
求下列二重积分的累次积分
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
讨论曲线y=2lnx与y=2x+ln2+k在(0,+∞)内的交点个数(其中k为常数).
设f(x)在(a,b)内可导,证明:,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是f(x0)+f’(x0)(x一x0)>f(x).(*)
求点M1(2,1,3)到平面∏:2x-2y+z-3=0的距离与投影.
设函数y=f(x)在[a,b](a>0)连续,由曲线y=f(x),直线x=a,x=b及戈轴围成的平面图形(如图3.12)绕y轴旋转一周得旋转体,试导出该旋转体的体积公式.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα1=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球中一个是红球一个是白球;
设有向量组(I):α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,t+2)T,α4=(一2,一6,10,t)T.(1)t为何值时,(I)线性无关?并在此时将向量α=(4,1,6,10)T用(I)线性表出;
随机试题
甲有父亲、母亲、配偶(机关干部)、儿子(工程师)、女儿(小学音乐教师)各一人。甲去世,留有遗产,房屋6间、荷款5000元、古字画10件和钢琴一架。甲生前自书遗嘱指定:房产归妻子和儿女继承,古字画赠给文物部门。对存款和钢琴遗嘱未作处理。现甲的女儿提出要将钢琴
链霉素急性中毒出现口唇、面部及四肢麻木感,严重时出现呼吸抑制,解救的药物是( )
(2009年)在如下关系信号和信息的说法中,正确的是()。
地下防水工程施工期间,明挖法的基坑必须保持地下水位至少稳定在基底()m以下。
转增股本,投资者持有的股票数会增加。()
欧美发达国家的保险实践表明,通常购买保险产品是有效的税收筹划方法。()
如果中国政府在美国纽约发行一笔美元债券,则该笔债券属于()的范畴。
21世纪以来形成的全面营销观念主要涉及的方面不包括()。
我国校对工作的基本制度包括()等。
ThougheverymorningIqueue(排队)atthebusstopveryearly,Iamoften(41)forschool.Thereasonisthatthereare(42)
最新回复
(
0
)