首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A。
admin
2019-03-07
87
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解。
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A。
选项
答案
(Ⅰ)因为矩阵A的各行元素之和均为3,所以 [*] 则由特征值和特征向量的定义知,λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量。对应λ=3的全部特征向量为kα,其中k为非零的常数。 又由题设知Av=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,对应λ=0的全部特征向量为k
1
α
1
+k
2
α
2
,其中k
1
,k
2
是不全为零的常数。 (Ⅱ)因为A是实对称矩阵,所以α与α
1
,α
2
正交,故只需将α
1
,α
2
正交。 取β
1
=α
1
, [*] 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
)= [*] 则Q
-1
=Q
T
,由实对称矩阵必可相似对角化,得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/mX04777K
0
考研数学一
相关试题推荐
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。(Ⅰ)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,利用(Ⅱ)的结果,证明α1,α2,
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3由α1,α2,α3线性表示。
求齐次线性方程组的通解,并将其基础解系单位正交化。
已知β1=,β2=,β3=与α1=,α2=,α3=具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值。
向量β=(1,-2,4)T在基α1=(1,2,4)T,α2=(1,-1,1)T,α3=(1,3,9)T下的坐标是________。
向量组α1=(1,1,2,3)T,α2=(-1,1,4,-1)T的施密特正交规范化向量组是________。
设向量组α1,α2,…,α3线性无关,则下列向量组线性相关的是()
随机试题
1987年,()的颁布,意味着我国的乡村治理主体不再是单一的农村基层党组织。
下面关于WiFi的说法,正确的是()。
关于慢性粒细胞白血病的说法,正确的是()
甲与乙协议离婚,协议中约定儿子丙(时年9岁)由甲抚养,乙每月承担抚养费100元,直到丙18周岁。出现下列哪些情况,丙可以要求乙承担费用?()
建设项目业主组织验收所进行的检查工作包括()。
水利工程建设监理对工程建设的投资、工期和质量实行管理的工作方式为()。
丙加工厂按照规定,本应于2011年3月15日前缴纳应纳税款40万元,该加工厂却迟迟未交。当地税务局责令其于当年3月31日前缴纳,并加收滞纳金。但直到4月20日,该加工厂才缴纳税款。根据《中华人民共和国税收征收管理法》的规定,该加工厂应缴纳的滞纳金金额是(
()是中国第一大淡水湖。
课程的类型是根据()来确定的。
马老师负责本次公务员考试成绩数据的整理,按照下列要求帮助她完成相关的整理、统计和分析工作。将考生文件夹下的工作簿文档“Excel素材.xlsx”另存为“Excel.xlsx”(“.xlsx”为文件扩展名),之后所有的操作均基于此文件,否则不得分。操作过
最新回复
(
0
)