首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
admin
2020-03-16
37
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求作矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
选项
答案
由于α
1
,α
2
,α
3
,线性无关,矩阵P=(α
1
,α
2
,α
3
)可逆,并且 E=P
-1
(α
1
,α
2
,α
3
)=(P
-1
α
1
,P
-1
α
2
,P
-1
α
3
), 则P
-1
α
1
=(1,0,0)
T
,P
-1
α
2
=(0,1,0)
T
,P
-1
α
3
=(0,0,1)
T
,于是 B=P
-1
AP=P
-1
A(α
1
,α
2
,α
3
)=P
-1
(α
1
+α
2
+α
3
,2α
1
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/mdA4777K
0
考研数学二
相关试题推荐
已知线性方程组当a,b,c满足什么关系时,方程组只有零解?
设线性方程组设a1=a3=k,a2=a4=—k(k≠0),并且β1=(—1,1,1)T和β2=(1,1,—1)T是两个解。求此方程组的通解。
设A为n阶方阵,任何n维列向量都是方程组的解向量,则R(A)=________。
[2007年]设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b)使得f″(ξ)=g″(ξ).
[2016年]已知f(x)在区间[0,]上连续,在(0,)内是函数的一个原函数,f(0)=0.求f(x)在区间[0,]上的平均值.
[2014年]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:0≤∫axg(t)dt≤x一a,x∈[a,b];
(99年)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,an==∫1nf(x)dx(n=1,2,…),证明数列{an}的极限存在.
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)-f(0)=o(h),试求a,b的值.
[2006年]设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解.(1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设X1,X2,…,Xn是取自总体X的一个简单随机样本,统计量试问上面三个统计量哪些是总体期望μ的无偏估计,并比较哪一个更有效?
随机试题
倡导道教于鹤鸣山(今四川崇庆境内),因入道须出五斗米,故称“五斗米道”。这位“天师”是
Pickouttheappropriateexpressionsfromtheeightchoicesbelowandcompletethefollowingdialogsbyblackeningthecorrespo
甲将其对乙享有的10万元货款债权转让给丙,丙再转让给丁,乙均不知情。乙将债务转让给戊,得到了甲的同意。丁要求乙履行债务,乙以其不知情为由抗辩。下列哪一表述是正确的?()(12年司考.卷三.单13)
关于疲劳极限曲线,以下说法中正确的有()。
下列关于替代品的描述中,错误的是()。
2012年年末,合肥市规模以上工业企业2087户,全年实现工业增加值1653.54亿元,比上年增长17.4%。其中,轻工业增加值653.28亿元,增长16.5%;重工业增加值1000.26亿元,增长18%。战略性新兴产业完成产值1598.74亿元,比上年增
1938年1月6日,新四军军部在南昌成立,并建立新四军驻赣办事处,()任办事处主任。
中国的两大知名乐团是()
清()年间收藏《四库全书》的藏书阁被称为“北四阁”和“南三阁”,其中“北四阁”分别是文渊阁、()。
发生明显变化
最新回复
(
0
)