首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B及A*都是n(n≥3)阶非零矩阵,且AB=0,则r(B)=( )
设A,B及A*都是n(n≥3)阶非零矩阵,且AB=0,则r(B)=( )
admin
2016-03-18
24
问题
设A,B及A
*
都是n(n≥3)阶非零矩阵,且AB=0,则r(B)=( )
选项
A、0
B、1
C、2
D、3
答案
B
解析
由B为非零矩阵得r(A)<n,从而r(A
*
)=0或r(A
*
)=1,
因为A
*
为非零矩阵,所以r(A
*
)=1,于是r(A)=n-1,
又由AB=0得r(A)+r(B)≤n,从而r(B)≤1,再由B为非零矩阵得r(B)≥1,
故r(B)=1,应选(B)
转载请注明原文地址:https://kaotiyun.com/show/mkw4777K
0
考研数学一
相关试题推荐
设A为n阶非奇异矩阵,α是n维列向量,b为常数,.计算PQ.
设A=E-ααT,其中α为n维非零列向量,证明:当α是单位向量时A为不可逆矩阵。
设A,B都是n阶可逆矩阵,则()。
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0求A的特征值与特征向量。
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0证明:α1,α2,α3,…,αn线性无关。
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
随机试题
有效的跨文化沟通策略有哪些?
不符合社会主义集体主义原则的道德要求的是【】
丙泊酚的特点是
8岁男孩,疝内容物可达阴囊处,疝块回纳后,压迫内环,增加腹压疝块不再出现。诊断应考虑为
预警系统主要由()几部分组成。
该设备在申报出境修理时,应该向海关提交______。该设备在复运进境时,报关单“贸易方式”栏填报为______。
李老师坚信自己能教好学生,在教育教学中表现出很高的热情,这主要反映了他具有较高的教学()。
20世纪中后期,()提出了智力结构模型,同时考虑了智力的内容、过程和结果,并指出智力测验不能测量儿童的创造力。
(2004年单选9)王某打架斗殴,公安机关依据《中华人民共和国治安管理处罚法》的规定对其罚款50元,这种处罚属于()。
A、Becauseofitsfriendlyfolks.B、Becauseofitscleanair.C、Becauseofitsquietness.D、Becauseofthesenseoffreshness.D关
最新回复
(
0
)