首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0 证明:α1,α2,α3,…,αn线性无关。
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0 证明:α1,α2,α3,…,αn线性无关。
admin
2021-11-25
76
问题
设A是n阶矩阵,α
1
,α
2
,α
3
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…Aα
n-1
=α
n
,Aα
n
=0
证明:α
1
,α
2
,α
3
,…,α
n
线性无关。
选项
答案
令x
1
α
1
+x
2
α
2
+x
3
α
3
+…+x
n
α
n
=0,则 x
1
Aα
1
+x
2
Aα
2
+x
3
Aα
3
+…+x
n
Aα
n
=0→x
1
α
2
+x
2
α
3
+x
3
α
4
+…+x
n-1
α
n
=0 x
1
Aα
2
+x
2
Aα
3
+x
3
Aα
4
+...+x
n-1
Aα
n
=0→x
1
α
3
+x
2
α
4
+x
3
α
5
+...+x
n-2
α
n
=0 . . . x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
2
=x
3
=...=x
n
=0,所以α
1
,α
2
,α
3
,…,α
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/rZy4777K
0
考研数学二
相关试题推荐
设函数f(x)(x≥0)连续可导,且f(0)=1.又已知曲线y=f(x)、x轴、y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积值与曲线y=f(x)在[0,x]上的一段弧长值相等,求f(x).
已知三阶矩阵A的三个特征值为1,2,3,则(A-1)*的特征值为_________.
设f(x)在[a,b]上存在二阶导数,f(a)=f(b)=0,并满足f”(x)﹢[f’(x)]2-4f(x)=0.则在区间(a,b)内f(x)()
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.(Ⅰ
设z=z(x,y)由方程所确定,其中F是任意可微函数,则=______。
设方程组有通解k1ξ1+k2ξ2=k1[1,2,1,一1]T+k2[0,一1,一3,2]T.方程组有通解λ1η1+λ2η2=λ1[2,一1,一6,1]T+λ2[一1,2,4,a+8]T.已知方程组有非零解,试确定参数a的值,并求该非零解.
设函数f(x)二阶可导,且f’(x)>0,f"(x)>0,△y=f(x+△x)-f(x),其中△x
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
设f(x)是连续函数,F(x)是f(x)的一个原函数,则()
现有两只桶分别盛有10L浓度为15g/L的盐水,现同时以2L/min的速度向第一只桶中注入清水,搅拌均匀后以2L/min的速度注入第二只桶中,然后以2L/min的速度从第二只桶中排出,问5min后第二只桶中含盐多少克?
随机试题
上道路行驶的机动车故意遮挡、污损、不按规定安装机动车号牌的一次记几分?
A.每搏输出量B.心率C.外周阻力D.主动脉和大动脉弹性
若需拔除位于放射治疗区的患牙,最佳拔牙时间是
判定二尖瓣狭窄的程度,最有价值的检查是
A.变更登记B.缴销C.变相销售D.调剂使用E.SDA批准医疗机构新增配制剂型的,应按规定办理《医疗机构制剂许可证》()
某房地产公司根据市场调查,将目标客户确定为成功的私营企业老板,收入在3000万元以上,选择风景秀丽的都市远郊开发豪华别墅,售价在1000万元以上,其目标市场模式为()。
统计推断是指()。
在()的情况下,月/N比的比值可能较小。
建设工程施工质量验收时,对涉及结构安全和使用功能的重要分部工程,应进行()检测。
Theinterview-about2minutesInthisparttheinterlocutorasksquestionstoeachofthecandidatesinturn.Youhavetogivei
最新回复
(
0
)