首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=______。
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=______。
admin
2020-03-10
32
问题
设α
1
=(1,2,1)
T
,α
2
=(2,3,a)
T
,α
3
=(1,a+2,-2)
T
,若β
1
=(1,3,4)
T
可以由α
1
,α
2
,α
3
线性表示,但是β
2
=(0,1,2)
T
不可以由α
1
,α
2
,α
3
线性表示,则a=______。
选项
答案
-1
解析
根据题意,β
1
=(1,3,4)
T
可以由α
1
,α
2
,α
3
线性表示,则方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
有解,β
2
=(0,1,2)
T
不可以由α,α,α线性表示,则方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解,由于两个方程组的系数矩阵相同,因此可以合并一起作矩阵的初等变换,即
因此可知,当a=-1时,方程组xα+xα+xα=β有解,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解,故a=-1。
转载请注明原文地址:https://kaotiyun.com/show/mpS4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 [*]
(07年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设随机变量X服从二项分布,即X~B(n,p),证明X的方差D(X)=np(1一p)。
若随机变量X~N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为,则μ=__________。
[2013年]已知极限,其中k,c为常数,且c≠0,则().[img][/img]
[2003年]设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设函数f(x)在x=0可导,且f(0)=1,f’(0)=3,则数列极限=__________。
设有四个编号分别为1,2,3,4的盒子和三只球,现将每只球随机地放入四个盒子,记X为至少有一只球的盒子的最小号码。(Ⅰ)求X的分布律;(Ⅱ)若当X=k(k=1,2,3,4)时,随机变量Y在[0,k]上服从均匀分布,求P{Y≤2}。
设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
若当x→0时,有,则a=______
随机试题
经常采用压料方式放料的反应器是()。
FarmerEdRawlingssmilesashelooksathisorangetrees.TheyoungorangesaregrowingwellinFlorida’sweather.Warmsunshin
肝细胞性黄疸患者伴随症状常有
下列各项关于投资性房地产计提折旧或摊销的表述中正确的有()。
某工业企业职工共30人,企业的资产总额为300万元,上年亏损52万元,2019年企业有关生产、经营资料如下:(1)取得产品销售收入230万元、国债利息收入23万元,金融债券利息收入39万元。(2)发生产品销售成本100万元;发生产品销售税金及附加5.6
我国自主研制的综合技术处于国际领先水平计算机系统于2014年6月23日以每秒33.86千万亿次的浮点运算速度获得世界超算“三连冠”。它是()。
扩张性货币政策主要指()。
一个民族的建筑有它自己的构造规则或组合方式,如同语言的“文法”。中国建筑就具有特殊的“文法”。我们的祖先在选择了木料之后逐渐了解了木料的特长,创始了骨架结构初步方法——中国系统的“梁架”。这以后他们发现了木料性能上的弱点。当水平的梁枋将重量转移到
作为一名大学毕业生,如果能够具备较扎实的专业知识和基本的社会交往能力,或者是在就业市场上能够作出适合自己的选择,那么,就不可能找不到自己的位置。小王是一名大学毕业生。他没有找到工作职位,那么根据上述观点能够推出以下哪项结论?
Imagineeatingeverythingdeliciousyouwant—withnoneofthefat.Thatwouldbegreat,wouldn’tit?New"fakefat"products
最新回复
(
0
)