首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,A的秩为2,且 求A的所有特征值与特征向量.
设A为3阶实对称矩阵,A的秩为2,且 求A的所有特征值与特征向量.
admin
2018-08-03
21
问题
设A为3阶实对称矩阵,A的秩为2,且
求A的所有特征值与特征向量.
选项
答案
由于A的秩为2,故0是A的一个特征值.由题设可得 [*] 所以,一1是A的一个特征值,且属于一1的特征向量为k
1
(1,0,一1)
T
,k
1
为任意非零常数;1也是A的一个特征值,且属于1的特征向量为k
2
(1,0,1)
T
,k
2
为任意非零常数. 设x=(x
1
,x
2
,x
3
)
T
为A的属于。的特征向量,由于A为实对称矩阵,A的属于不同特征值的特征向量相互正交,则 [*] 解得上面齐次线性方程组的基础解系为(0,1,0)
T
,于是属于0的特征向量为k
3
(0,1,0)
T
,其中k
3
为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/mug4777K
0
考研数学一
相关试题推荐
证明:(1)设an>0,R{nan}有界,则级数收敛;(2)若收敛.
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<e(x>0).
设f(x)在[a,b]上连续,且f"(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1一λ)x2]≤λf(x1)+(1一λ)f(x2).
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f"(ξ)<0.
设X~N(1,σ2),Y~N(2,σ2)为两个相互独立的总体,X1,X2,…,Xn与Y1,Y2,…,Yn分别为来自两个总体的简单样本,S12=服从___________分布.
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率.
设W={(x1,x2,…,xn)|x1一2x2+x3=0},求向量空间W的维数及一组规范正交基.
已知x1,x2,…,x10是取自正态总体N(μ,1)的10个观测值,统计假设为H0:μ=μ0=0;H1:μ≠0.(Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值;(Ⅱ)若已知=1,是否可以据此样本推断μ=0(α=0.05)?
计算行列式|A|=之值.
随机试题
新型城镇化是现代化的必由之路,是最大的内需潜力所在,是经济发展的重要动力,也是一项重要的民生工程。要坚持走中国特色新型城镇化道路,以()为核心,以()为关键,以()为动力,紧紧围绕()目标任务,加快推进户籍制度改革,
以下对于状态监测型防火墙的描述中,错误的是()。
与一般的感知活动相比,审美感知具有一系列自身的特点。
“少仲尼之闻而轻伯夷之义”出自于()
有关滴眼剂错误的叙述是
女,40岁。活动后心悸、气短5年,夜间不能平卧2周。既往有反复关节痛病史。查体:两颊呈紫色,心尖部可闻及舒张期杂音。最有助于确诊的检查是
在我国,最常见的细菌性痢疾的病原菌是
不成文宪法的特点及构成。
“自然灾害”是人类依赖的自然界所发生的异常现象,自然灾害对人类社会所造成的危害往往是触目惊心的。它们之中既有地震、火山爆发、泥石流、海啸、台风、洪水等突发性灾害;也有地面沉降、土地沙漠化、干旱、海岸线变化等在较长时间中才能逐渐显现的渐变性灾害;还有臭氧层变
关于电子邮件,下列说法错误的是()。
最新回复
(
0
)