首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(Ⅰ)的基础解系为考ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
已知齐次线性方程组(Ⅰ)的基础解系为考ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
admin
2020-03-10
119
问题
已知齐次线性方程组(Ⅰ)的基础解系为考ξ
1
=[1,0,1,1]
T
,ξ
2
=[2,1,0,-1]
T
,ξ
3
=[0,2,1,-1]
T
,添加两个方程
后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
选项
答案
方程组(Ⅰ)的通解为 k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
=[*] 代入添加的两个方程,得 [*] 得解:η
1
=[2,-3,0]
T
,η
2
=[0,1,-1]
T
,故方程组(Ⅱ)的基础解系为 ξ
1
=2ξ
1
-3ξ
2
=[-4,-3,2,5]
T
,ξ
2
=ξ
2
-ξ
3
=[2,-1,-1,0]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/mwD4777K
0
考研数学三
相关试题推荐
设f(x)在[-e,e]上连续,在x=0处可导,且f’(0)≠0。(Ⅰ)证明对于任意x∈(0,e),至少存在一个θ∈(0,1),使得(Ⅱ)求极限。
向量组α1=(1,一2,0,3)T,α2=(2,一5,一3,6)T,α3=(0,1,3,0)T,α4=(2,一1,4,7)T的一个极大线性无关组是_________。
设α1=(1,2,3,1)T,α2=(3,4,7,一1)T,α3=(2,6,0,6)T,α4=(0,1,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
现有四个向量组①(1,2,3)T,(3,一l,5)T,(0,4,一2)T,(1,3,0)T;②(a,l,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,l,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
设A=,A*为A的伴随矩阵,则(A*)-1=___________。
与矩阵A=可交换的矩阵为___________。
设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
设向量组α3=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,0)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
随机试题
A.黄曲霉毒素B.3,4-苯并芘C.EB病毒D.紫外线照射E.人乳头瘤病毒肝癌
下列哪支眼静脉的血流变化用于诊断颈动脉海绵窦瘤:
A.淀粉酶检测B.血清甲胎蛋白检测C.腹部CT检查D.血CEAE.立位腹平片诊断早期原发性肝癌最有意义的检查是
以下哪项不属于氯丙嗪的适应证
高温车间的混凝土结构施工中,水泥应选用()。
下列不属于资产类科目的是()。
对于财政支出增长趋势的解释,()提出了“公共收入增长导致论”。
谈谈你对主题班会的认识。
甲、乙两人互发E-mail协商洽谈合同,4月30日甲称:“我有笔记本电脑一台,配置为……九成新,8000元欲出手。”5月1日乙回电称:“东西不错,7800元可要。”甲于5月2日回复:“可以,5月7日到我这儿来。”乙于5月4日回电:“同意。”甲于当日收到。上
TheauthorassertsthatremedyingtheearthatmospherewilldependuponothermeasuresthanAccordingtothetext,whatencoura
最新回复
(
0
)