首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组A:α1=(0,1,2,3)T,α2=(3,0,1,2)T,α3=(2,3,0,1)T;B:β1=(2,1,1,2)T,β2=(0,一2,1,1)T,β3=(4,4,1,3)T.试证B组能由A组线性表示,但A组不能由B组线性表示.
已知向量组A:α1=(0,1,2,3)T,α2=(3,0,1,2)T,α3=(2,3,0,1)T;B:β1=(2,1,1,2)T,β2=(0,一2,1,1)T,β3=(4,4,1,3)T.试证B组能由A组线性表示,但A组不能由B组线性表示.
admin
2021-02-25
65
问题
已知向量组A:α
1
=(0,1,2,3)
T
,α
2
=(3,0,1,2)
T
,α
3
=(2,3,0,1)
T
;B:β
1
=(2,1,1,2)
T
,β
2
=(0,一2,1,1)
T
,β
3
=(4,4,1,3)
T
.试证B组能由A组线性表示,但A组不能由B组线性表示.
选项
答案
对由两组向量构成的矩阵施初等行变换: [*] 由此可知r(A)=r(A,B)=3,所以向量组B能由向量组A线性表示. 又由于 [*] 得r(B)=2≠r(A,B),所以向量组A不能由向量组B线性表示.
解析
本题考查两向量组的线性表示.要求考生掌握B组能由A组线性表示的充分必要条件,r(A)=r(A,B).
转载请注明原文地址:https://kaotiyun.com/show/ni84777K
0
考研数学二
相关试题推荐
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
证明n维向量α1,α2……αn线性无关的充要条件是
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设f(x)为连续函数,试证明:若f(x)为奇函数,则f(x)的一切原函数均为偶函数;若f(x)为偶函数,则有且仅有一个原函数为奇函数.
随机试题
督察制度是为完善公安机关自我发展机制而依法建立的一种内部监督制度。()
患者出现深大呼吸的是
有关上颌窦解剖结构的描述中,错误的是
下列论述错误的是
层次分析法的基本步骤是()
期货交易所的非期货公司结算会员的从业人员不得()。
根据车船税法规定,下列属于车船税征税范围的有()。
旅游团安排住宿,如果4个房间每间住4人,其余房间每间住5人,空余2个床位;若有4个房间每间住5人,其余房间每间住4人,正好住下,该旅游团有多少人?()
设D是有界闭区域,下列命题中错误的是
IntargetingconsumerswhatPepsicallsthe"PowerofOne"makesperfectsense:it’sallaboutmakingsure.thateverybodywhob
最新回复
(
0
)