首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2019-09-27
63
问题
设A=
,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A|=[*]=(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-A]X=0得ξ
1
=[*];λ
2
=a时,由(aE-A)X=0得ξ
2
=[*];λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
=[*] 令P=[*],P
-1
AP=[*] (2)当a=0时,λ
1
=λ
3
=1, 因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当a=[*]时,λ
1
=λ
2
=[*], 因为[*]=2,所以方程组[*]=0的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/nnS4777K
0
考研数学一
相关试题推荐
设矩阵A=,矩阵B满足AB+B+A+2E=O,则|B+E|=()
设随机事件A与B为对立事件,0<P(A)<1,则一定有()
设λ=2是可逆矩阵A的一个特征值,则(1/3A2)-1+E的一个特征值是
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α1,α1+α2,α2+α
曲线y=的弧长为()
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设A是三阶矩阵,其中a11≠0,Aij=aij(i=1,2,3,j=1,2,3),则|2AT|=()
由曲线xy=1及直线y=x,y=2所围成的平面图形的面积为()
下列四个级数中发散的是()
求幂级数(2n+1)xn的收敛域及和函数.
随机试题
机动车仪表板上(如图所示)亮时,提醒发动机冷却液可能不足。
罪犯暂予监外执行审批表由监狱管理局做出决定后,应抄送
慢性菌痢的病程应该超过的时间是
下列关于乳磨牙髓腔的描述不正确的是
A.理气和中,燥湿化痰B.通阳散结C.温中止呕,纳气平喘D.温肾散寒E.健脾消食乌药除行气止痛外,还具有的功效是
A.粘滞阻力B.惯性阻力C.气道阻力D.肺弹性阻力E.胸廓弹性阻力
(2006,2009)一管径d=50mm的水管在水温t=10℃时管内要保持层流的最大流速是()。(10℃时水的运动黏度为v=1.31×10-6m2/s)
老姜是一家工厂的工人。近期工厂进行改革,精简人员,老姜下岗了。老姜的妻子在制药厂工作,就在老姜下岗后不久,妻子因为所在的制药厂破产也面临着失业。妻子的身体有残疾,很难再找到工作,女儿正在外地读大学,费用很高,家庭生活越来越困难。老姜也曾尝试去找过工作,但他
我国人口最多的少数民族是()。
在法庭的被告中,被指控偷盗、抢劫的定罪率,要远高于被指控贪污、受贿的定罪率。其重要原因是后者能聘请收费昂贵的私人律师,而前者主要由法庭指定的律师辩护。以下哪项如果为真,最能支持题干的叙述?
最新回复
(
0
)