首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(―a,a)(a>0)内连续,在x=0处可导,且f′(0)≠0. (Ⅰ)求证:对任意给定的x(0<x<a),存在0<θ<1,使 (Ⅱ)求极限
设函数f(x)在(―a,a)(a>0)内连续,在x=0处可导,且f′(0)≠0. (Ⅰ)求证:对任意给定的x(0<x<a),存在0<θ<1,使 (Ⅱ)求极限
admin
2019-06-06
127
问题
设函数f(x)在(―a,a)(a>0)内连续,在x=0处可导,且f′(0)≠0.
(Ⅰ)求证:对任意给定的x(0<x<a),存在0<θ<1,使
(Ⅱ)求极限
选项
答案
(Ⅰ)设 [*] 则F(0)=0.因而可在[0,x]上对F(x)使用拉格朗日中值定理,即可证得(1). (Ⅱ)利用(Ⅰ)的结果可将等式左端凑成导数定义的形式,然后取极限求之. 解 (Ⅰ)令 [*] 则F(x)在[0,x]上可微,且F(0)=0,对F(x)在[0,x]上使用拉格朗日中值定理,得到θx(0<θ<1),使 F(x)一F(0)=F′(θx)·x, 即 [*] (Ⅱ)利用式①,令x→0
+
,两边分别取极限,左边得到 [*] 右边得到 [*] 于是得到 [*] 因f′(0)≠0,故[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nqV4777K
0
考研数学二
相关试题推荐
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)((x0-δ,x0))可导,又,求证:f’+(x0)=A(f’-(x0)=A).(Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x0+δ)/{x0}可导,
设f(χ)=sin3χ+∫-ππχf(χ)dχ,求∫0πf(χ)dχ.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
设四元齐次线性方程组(Ⅰ)为且已知另一个四元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,-1,a+2,1)T,α=(-1,2,4,a+8)T.当a为何值时,方程组(Ⅰ)与方程组(Ⅱ)有非零公共解?
设矩阵A的伴随矩阵且ABA一1=BA一1+3E,其中E为4阶单位矩阵,求矩阵B.
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且dz|(x0,y0)=fy’(x0,y0)△x+fy’(x0,y0)△y。
如图1—5—1,C1和C2分别是y=(1+ex)和y=ex的图象,过点(0,1)的曲线C3是一单调增函数的图象。过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly。记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图形的面积为
设f(x,y,z)=ex+y2z,其中z=z(x,y)是由方程x+y+z+xyz=0所确定的隐函数,则fx’(0,1,一1)=_________。
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.设,求出可由两组向量同时线性表示的向量.
随机试题
下列关于温抗体型自身免疫性溶血性贫血的叙述不正确的是
下列不是第一恒磨牙正常萌出的影响因素的是
不具有雌激素活性的环境污染物是()
下列各项中,不属于医师在执业活动中应当履行的法定义务是
A.沿乳晕边缘做弧形切口B.以乳头为中心循乳管方向做放射状切口C.沿乳房下缘做弧形切口D.对口引流E.洞式切口与中药线引流乳晕下脓肿,切开引流应
A、水提醇沉法B、离心分离法C、大孔树脂法D、膜分离法E、吸附澄清法包括微滤、超滤、反渗透等操作技术
径赛运动员犯规,对其取消比赛资格的判罚,检查主裁判应()。
后现代主义课程论指出,课程不应该帮助学生去适应社会,而是要建立一种新的社会秩序和社会文化。()
HowOneSimpleMovementCanLetSliptheSecretsoftheMindBodylanguageisthequiet,secretandmostpowerfullanguageofal
UniversitiesBranchOutA)Asneverbeforeintheirlonghistory,universitieshavebecomeinstrumentsofnationalcompetitionas
最新回复
(
0
)