首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的分布函数为: F(χ,y)=A(B+arctan)(C+arctan),-∞<χ<+∞,-∞<y<+∞. 求:(1)常数A,B,C; (2)(X,Y)的概率密度f(χ,Y); (3)关于X和Y的边缘
设二维随机变量(X,Y)的分布函数为: F(χ,y)=A(B+arctan)(C+arctan),-∞<χ<+∞,-∞<y<+∞. 求:(1)常数A,B,C; (2)(X,Y)的概率密度f(χ,Y); (3)关于X和Y的边缘
admin
2018-08-30
49
问题
设二维随机变量(X,Y)的分布函数为:
F(χ,y)=A(B+arctan
)(C+arctan
),-∞<χ<+∞,-∞<y<+∞.
求:(1)常数A,B,C;
(2)(X,Y)的概率密度f(χ,Y);
(3)关于X和Y的边缘密度f
X
(χ)和f
Y
(y).
选项
答案
(1)0=F(-∞,y)=A(B=[*])(C+arctan[*]),[*]∈R
1
,0=F(χ,-∞)=A(B+arctan[*])(C[*]),[*]χ∈R
1
,1=F(+∞,+∞)=A[*],得A=[*],B=C=[*]; (2)f(χ,y)=[*],(χ,y)∈R
2
; (3)关于X和Y的边缘分布函数分别为F
X
(χ)=F(χ,+∞)=[*]和F
Y
(y)=F(+∞,y)=[*], 故f
X
(χ)=F′
X
=[*], 这里χ∈R
1
,y∈R
1
.
解析
转载请注明原文地址:https://kaotiyun.com/show/o0g4777K
0
考研数学一
相关试题推荐
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且=0,又f’(x)=一2x2+∫0xg(x—t)dt,则().
设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn—1(t)dt(n=1,2,…).
求的和.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
设二维随机变量(X,Y)的概率密度函数为f(x,y),则随机变量(2X,Y+1)的概率密度函数f1(x,y)=__________.
求下列微分方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx;(Ⅱ)y2dx=(x+y2)dy;(Ⅲ)(3y-7x)dx+(7y-3x)dy=0;(Ⅳ)-3xy=xy2.
判断下列3维向量的集合是不是R3的子空间,如是子空间,则求其维数与一组基:(Ⅰ)W1={(x,y,x)|x>0};(Ⅱ)W2={x,y,z)|x=0};(Ⅲ)W3={(x,y,z)|x+y-2z=0};(Ⅳ)W4:{(x,y,z)|3x-2y+z=
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(Ⅰ)计算PTDP,其中P=(Ⅱ)利用(Ⅰ)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
设A,B均是n阶正定矩阵,判断A+B的正定性.
随机试题
我国《劳动法》规定:未成年工是指()。
结核性脑膜炎早期结核性脑膜炎晚期
下列辅料中可用作助流剂的是
在颌面部骨中唯一能动的是
期货交易所宣布进入异常情况并决定暂停交易的,暂停交易的期限不得超过()个交易日,但经中国证监会批准延长的除外。
由于顾客不同,可能对同一产品提出不同的功能需求,也可能对同一产品的同一功能提出不同的需求,需求不同,质量要求也就不同。这体现了质量的()。
现有一配合物,它的化学式为[CoCl3(NH3)3],则其配位原子是()。
下列关于自由刑刑期及其刑期折抵的表述,正确的是()。
HowtoapproachListeningTestPartTwo•ThispartoftheListeningTesttestsyourunderstandingofnumbers,namesandspelling
Joyandsadnessareexperiencedbypeopleinallculturesaroundtheworld,buthowcanwetellwhenotherpeoplearehappyord
最新回复
(
0
)