设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明: |f(x)|≤∫ab|f’(x)|dx(a<x<b).

admin2018-05-25  36

问题 设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:
   |f(x)|≤ab|f’(x)|dx(a<x<b).

选项

答案因为 [*] 且f(a)=f(b)=0,所以 [*] 两式相加得|f(x)|≤[*][∫ab|f’(x)|dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/oBW4777K
0

最新回复(0)