首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为 其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求 (1)未知参数θ的最大似然估计量; (2)未知参数θ的矩估计量; (3)当样本值为1,1,2,1,3,2
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为 其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求 (1)未知参数θ的最大似然估计量; (2)未知参数θ的矩估计量; (3)当样本值为1,1,2,1,3,2
admin
2019-05-08
43
问题
设来自总体X的简单随机样本X
1
,X
2
,…,X
n
,总体X的概率分布为
其中0<θ<1.分别以v
1
,v
2
表示X
1
,X
2
,…,X
n
中1,2出现的次数,试求
(1)未知参数θ的最大似然估计量;
(2)未知参数θ的矩估计量;
(3)当样本值为1,1,2,1,3,2时的最大似然估计值和矩估计值.
选项
答案
(1)求参数θ的最大似然估计量.样本X
1
,X
2
,…,X
3
中1,2和3出现的次数分别为v
1
,v
2
和n-v
1
-v
2
,则似然函数和似然方程为 L(θ)=[*] lnL(θ)=[*]+(2v
1
+v
2
)lnθ+(2n-2v
1
-v
2
)ln(1-θ), [*]=0. 似然方程的唯一解就是参数θ的最大似然估计量 [*] (2)求参数θ的矩估计量.总体X的数学期望为 EX=θ
2
+4θ(1-θ)+3(1-θ)
2
. 在上式中用样本均值[*]估计数学期望EX,可得θ的矩估计量 [*] (3)对于样本值1,1,2,1,3,2,由上面得到的一般公式,可得最大似然估计值 [*] 矩估计值 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/obJ4777K
0
考研数学三
相关试题推荐
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)A和B;(Ⅱ)X的概率密度f(x)。
设随机变量X1,X2,…,Xn相互独立同分布,其密度函数为偶函数,且D(Xi)=1,i=1,2,…,n,则对任意ε>0,根据切比雪夫不等式直接可得()
设X1,X2,…,Xn为来自总体X的简单随机样本,而(0≤k≤n)=________。
设随机变量X~U[-1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数(un+1-un)绝对收敛.
(Ⅰ)求定积分an=∫02x(2x—x2)ndx,n=1,2,…;(Ⅱ)对于(Ⅰ)中的an,求幂级数anxn的收敛半径及收敛区间.
设数列{xn}由递推公式xn=(n=1,2,…)确定,其中a>0为常数,x0是任意正数,试证xn存在,并求此极限.
(1990年)某公司通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2—8x1x2—2x12一1022;1
λ4+λ3+2λ2+3λ+4.1按第1列展开,得行列式为=λ4+λ3+2λ2+3λ+42首先把第2列的λ倍加到第1列上去,其次把第3列的λ2倍加到第1列上去,最后把第4列的λ3加到第1列上去,然后将行列式按第1列展开,得行列式为=-(4+3λ
随机试题
下列有关文学常识的表述,正确的一项是()
试述眼内、外肌的名称和作用。
患者,女,36岁。出现腰骶部疼痛,呈持续性或间歇性,劳累后加重,休息后减轻。临床怀疑椎弓峡部断裂。为诊断椎弓峡部断裂,正确的摄影体位是
患者,男,24岁。目赤肿痛,眼涩难开,流泪,畏光,伴发热、恶风、头痛,舌苔薄黄,脉浮数。治疗除取睛明、太阳、合谷、太冲外,还应加
附子的性味是
偏酸性的诺氟沙星与偏碱性的氨苄青霉素钠一经混合,立即出现沉淀是因为
治疗休克的基本措施是()
某企业总经理办公室由10人组成,现从中选正、副主任各一人(不兼职),将所有可能的选举结果构成样本空间,则其中包含的样本点共有()个。
这个街区的垃圾可能要到星期四才能被清理。这儿的垃圾一般在星期三清理,而且垃圾清理员总是十分准时的。但是,由于星期一是一个公假日,如果周一是假日的话,全市的垃圾都会迟一天清理。上述论证是以下列哪一种方式展开的?()
Eversinceitappearedontheculturalscene,theEnlightenmenthashaditspassionatecritics.Philosophersaswellaspolitici
最新回复
(
0
)