首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是n×n矩阵,对任何n维列向量X都有AX=0.证明:A=O.
A是n×n矩阵,对任何n维列向量X都有AX=0.证明:A=O.
admin
2020-03-10
64
问题
A是n×n矩阵,对任何n维列向量X都有AX=0.证明:A=O.
选项
答案
由于对任何X均有AX=0,取X=[1,0,…,0]
T
,由 [*] 得a
11
=a
21
=…=a
m1
=0. 类似地,分别取x为e
1
=[1,0,…,0]
T
,e
2
=[0,1,0,…,0]
T
,…,e
n
=[0,0,…,1]
T
代入方程,可证每个a
ij
=0,故A=O.
解析
转载请注明原文地址:https://kaotiyun.com/show/owD4777K
0
考研数学三
相关试题推荐
设f(x)在[-e,e]上连续,在x=0处可导,且f’(0)≠0。(Ⅰ)证明对于任意x∈(0,e),至少存在一个θ∈(0,1),使得(Ⅱ)求极限。
设可导函数y=y(x)是由方程所确定,则=_____________________。
设向量组α3=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,0)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(I)线性无关的充分必要条件是矩阵K的秩r(K)=r。
已知极坐标系下的累次积分I=f(rcosθ,rsinθ)rdr,其中a>0为常数,则I在直角坐标系下可表示为__________。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
已知随机变量X,Y的概率分布分别为P{X=一1}=,P{X=0}=,P{X=1}=,P{Y=0}=,P{Y=1}=,P{Y=2}=,并且P{X+Y=1}=1,求:X与Y是否独立?为什么?
设二元函数f(x,y)=计算二重积分f(x,y)dσ,其中D={(x,y)||x|+|y|≤2}。
计算二重积分(x+y)3dxdy,其中D由曲线x=与直线x+√2y=0及x一√2y=0围成。
随机试题
阅读《寡人之于国也》中的一段文字,回答下列问题:孟子对日:“王好战,请以战喻。填然鼓之,兵刃既接,弃甲曳兵而走,或百步而后止,或五十步而后止,以五十步笑百步,则何如?”曰:“不可,直不百步耳,是亦走也。”曰:“王如知此,则无望民之多于邻国也。”
桂枝汤主治证候有
患者25岁,闭经56天,验尿HCG阳性,B超为宫内孕,但发现右卵巢囊性肿物直径5cm,内见密集光点。妇科检查肿物活动,囊性感,血肿瘤标记物未见异常,下一步处理哪项最合适:
在处方书写中,“请取”可用英文缩写为
心理评估常用的方法不包括
根据《人民币银行结算账户管理办法》的规定,银行对一年未发生收付活动且未欠开户银行债务的单位银行结算账户,应通知单位自发出通知之日起30日内办理销户手续,逾期视同自愿销户,未划转款项作为银行营业外收入处理。()
按联结的基础产品分类,可将结构化金融衍生产品分为()。
根据《政府采购法》的规定,下列各项中,属于招标采购中出现的应予废标的情形有()。
历史教师优化教学内容的具体目标指什么?
一个直角三角形的三条边分别是3厘米,4厘米,5厘米(如图),如果以它的最长边为轴旋转一周,求旋转后所形成图形的体积.(π取3计算)
最新回复
(
0
)