首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在命题 ①若f(x)在x=a处连续,且|f(x)|在x=a处可导,则f(x)在x=a处必可导, ②若φ(x)在x=a处连续,则f(x)=(x—a)φ(x)在x=a处必可导, ③若φ(x)在x=a处连续,则f(x)=(x一a)|φ(x)|在x=a处必不可导,
在命题 ①若f(x)在x=a处连续,且|f(x)|在x=a处可导,则f(x)在x=a处必可导, ②若φ(x)在x=a处连续,则f(x)=(x—a)φ(x)在x=a处必可导, ③若φ(x)在x=a处连续,则f(x)=(x一a)|φ(x)|在x=a处必不可导,
admin
2019-03-11
31
问题
在命题
①若f(x)在x=a处连续,且|f(x)|在x=a处可导,则f(x)在x=a处必可导,
②若φ(x)在x=a处连续,则f(x)=(x—a)φ(x)在x=a处必可导,
③若φ(x)在x=a处连续,则f(x)=(x一a)|φ(x)|在x=a处必不可导,
④若f(x)在x=a处连续,且
存在,则f(x)在x=a处必可导
中正确的是
选项
A、①②.
B、①③.
C、①②③.
D、②④.
答案
A
解析
①是正确的.设f(a)≠0,不妨设f(a)>0,由于f(x)在x=a处连续,故存在δ>0,当x∈(a一δ,a+δ)时f(x)>0,于是在此区间上f(x)≡|f(x)|,故f’(a)=[|f(x)|]’
x=a
存在.若f(a)<0可类似证明.
若f(a)=0,则
所以由夹逼定理得
②是正确的.因为
③是错误的.由②正确即知③是错误的.无妨取反例:φ(x)=x
2
,则
,即f(x)在x=a处可导.
④也不正确.可取反例:f(x)=|x|,显然f(x)在x=0处不可导,但
综上分析,应选A.
转载请注明原文地址:https://kaotiyun.com/show/p3P4777K
0
考研数学三
相关试题推荐
已知某企业的总收入函数为R=26x一2x2一4x3.总成本函数为C=8x+x3.其中x表示产品的产量,求利润函数.边际收入函数,边际成本函数,以及企业获得最大利润时的产量和最大利润.
设随机变量X服从[a,a+2]上的均匀分布,对X进行3次独立观测,求最多有一次观测值小于a+1的概率.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设f(x)=试将f(x)展开成x的幂级数.
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)0,则至少存在一点ξ∈[a,b]使得∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(x)]没有间断点。
设A和B为任意两不相容事件,且P(A)P(B)>0,则必有()
A,B,C三个随机事件必相互独立,如果它们满足条件()
随机试题
申请房地产经纪人注册的人员必须同时具备的条件有()。
下列元件中不属于组合夹具基础件的是()。
美学研究的核心方法是()
失业给付
未经医师(士)亲自诊查病人或亲自接产,医疗机构不得出具以下证明文件,除了
在房地产开发中的“三通一平”费用属于()。
陈先生与另一个合伙人在A市共同兴办了一家合伙企业甲,出资比例为5:5。2010年年初,陈先生向其主管税务机关报送了2009年度的所得税申报表和会计决算报表以及预缴个人所得税纳税凭证。该合伙企业年度会计报表反映:合伙企业2009年度的主营业务收入70万元,投
2016年年末,纳入统计范围的全国各类文化(文物)单位31.06万个,比上年年末增加1.15万个;从业人员234.81万人,同比增加2.34%。其中,各级文化文物部门所属单位66029个,增加319个;从业人员66.10万人,增加1.56万人。年末全国共
某计算机主存容量为4M×16位,且存储字长与指令字长相等,若该机指令系统可完成108种操作,操作码位数固定,且有直接、变址、基址、相对、立即5种寻址方式,试回答:画出一地址指令格式并指出各字段的作用。
AccordingtotheFBI,howmanyrobberiesweresolvedbythepolicelastyearintermsofpercentage?
最新回复
(
0
)