在命题 ①若f(x)在x=a处连续,且|f(x)|在x=a处可导,则f(x)在x=a处必可导, ②若φ(x)在x=a处连续,则f(x)=(x—a)φ(x)在x=a处必可导, ③若φ(x)在x=a处连续,则f(x)=(x一a)|φ(x)|在x=a处必不可导,

admin2019-03-11  37

问题 在命题
①若f(x)在x=a处连续,且|f(x)|在x=a处可导,则f(x)在x=a处必可导,
②若φ(x)在x=a处连续,则f(x)=(x—a)φ(x)在x=a处必可导,
③若φ(x)在x=a处连续,则f(x)=(x一a)|φ(x)|在x=a处必不可导,
④若f(x)在x=a处连续,且存在,则f(x)在x=a处必可导
中正确的是

选项 A、①②.
B、①③.
C、①②③.
D、②④.

答案A

解析 ①是正确的.设f(a)≠0,不妨设f(a)>0,由于f(x)在x=a处连续,故存在δ>0,当x∈(a一δ,a+δ)时f(x)>0,于是在此区间上f(x)≡|f(x)|,故f’(a)=[|f(x)|]’x=a存在.若f(a)<0可类似证明.
若f(a)=0,则
所以由夹逼定理得
②是正确的.因为
③是错误的.由②正确即知③是错误的.无妨取反例:φ(x)=x2,则
,即f(x)在x=a处可导.
④也不正确.可取反例:f(x)=|x|,显然f(x)在x=0处不可导,但

综上分析,应选A.
转载请注明原文地址:https://kaotiyun.com/show/p3P4777K
0

最新回复(0)