首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
admin
2018-07-26
46
问题
已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关.设β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
.试讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
假设有一组数x
1
,x
2
,…,x
s
,使得 x
1
β
1
+x
2
β
2
+…x
s
β
s
=0 将题设的线性表示式代入上式并整理,得 (x
s
+x
1
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0 由于α
1
,α
2
,…,α
s
线性无关,故有 [*] 此方程组的系数行列式为s阶行列式: [*] 因此有 (1)若s为奇数,则D=2≠0,故方程组(*)只有零解,即x
1
,x
2
,…,x
s
必全为0.这时,β
1
,β
2
,…,β
s
线性无关; (2)若s为偶数,则D=0,故方程组(*)有非零解,即存在不全为0的一组数x
1
,x
2
,…,x
s
,使x
1
β
1
+x
2
β
2
+…+x
s
β
s
=0.这时,向量组β
1
,β
2
,…,β
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/pTW4777K
0
考研数学三
相关试题推荐
已知A=,其中a1,a2,…,an两两不等.证明与A可交换的矩阵只能是对角矩阵.
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则当△x→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)-f(x0)与△x比较是()无穷小,与△x比较是()无穷小(Ⅱ)设函
若αi1,αi2,…,αir与αj1,αj2,…,αjt都是α1,α2,…,αs的极大线性无关组,则r=t.
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表出,则下列命题正确的是
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=______.
已知α1=(1,2,3,4)T,α2=(2,0,-1,1)T,α3=(6,0,0,5)T,则向量组的秩r(α1,α2,α3)=_______,极大线性无关组是_______.
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3,(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
设曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,求常数a,b.
随机试题
臂肌后群主要为肱三头肌。()
求,其中D为y=χ,y=χ+a,y=a和y=3a(a>0)为边的平行四边形。
无牙牙合患者修复前做牙槽嵴修整的主要目的是
不是氯丙嗪作用的是
男,45岁。患主动脉瓣关闭不全。在主动脉瓣听诊区及主动脉瓣第2听诊区可闻及叹气样舒张期杂音,该杂音在下列哪种体位时更易听到
下列选项中必须签订劳动合同并办理工伤、医疗或综合保险等社会保险的有()
某铁路桥梁基础长10m、宽8m、深3m,所处位置土质湿度正常,结构均匀,为密实黏性土。该基础开挖方法宜采用()。
消防工程施工程序中,最终工序是()。
Changeisinevitable.Itisnotsomethingthatwecanbargainwith.Itisnotsomethingthathappensonlytootherpeople;chang
____thetemperaturegoingdownsoquickly,Idon’tthinkweareabletogoonwithourexperiment.
最新回复
(
0
)