首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设2阶矩阵A有两个不同特征值,α1,α2是A的线性无关的特征向量,且满足A2(α1+α2)=α1+α2,则|A|=___________.
设2阶矩阵A有两个不同特征值,α1,α2是A的线性无关的特征向量,且满足A2(α1+α2)=α1+α2,则|A|=___________.
admin
2019-05-22
40
问题
设2阶矩阵A有两个不同特征值,α
1
,α
2
是A的线性无关的特征向量,且满足A
2
(α
1
+α
2
)=α
1
+α
2
,则|A|=___________.
选项
答案
一1.
解析
设2阶矩阵A的两个不同特征值为λ
1
,λ
2
,则这两个特征值都是A的单特征值,因为属于单特征值的线性无关特征向量只有1个.故α
k
是属于λ
k
(k=1,2)的特征向量.于是有
Aα
k
=λ
k
α
k
,A
2
α
k
=λ
k
2
α
k
(k=1,2),
从而有 A
2
(α
1
+α
2
)=A
2
α
1
+A
2
α
2
=λ
1
2
α
1
+λ
2
2
α
2
,
由已知条件得 A
2
(α
1
+α
2
)=λ
1
2
α
1
+λ
2
2
α
2
=α
1
+α
2
,
或 (λ
1
2
一1)α
1
+(λ
2
2
一1)α
2
=0,
因为α
1
,α
2
线性无关,得λ
1
2
一1=0,λ
1
2
一1=0,→λ
1
=1.λ
2
=一1,或λ
1
=一1,λ
2
=1,
于是由特征值的性质得|A|=λ
1
λ
2
=一1.
转载请注明原文地址:https://kaotiyun.com/show/q2c4777K
0
考研数学一
相关试题推荐
设微分方程xy'+2y=2(ex一1).补充定义使y0(x)在x=0处连续,求y'0(x),并请证明无论x≠0还是x=0,y'0(x)均连续,并请写出y'0(x)的表达式.
函数.将f(x)展开成x一1的幂级数,并求此幂级数的收敛域;
设exsin2x为某n阶常系数齐次线性微分方程的一个解,则该方程的阶数n至少是__________,该方程为___________.
回答下列问题记,证明AAT是正定矩阵.
回答下列问题设a1=(a1,a2,a3,a4),a2=(a2,一a1,a4,一a3),a3=(a3,一a4,一a1,a2),其中ai(i=1,2,3,4)不全为零.证明a1,a2,a3线性无关;
设Z=f(x,y)在点O(0,0)的某邻域内有定义,向量与表示相应的方向导数.存在的
(21)设向量组(i)α1=(2,4,一2)T,α2=(一l,a一3,1)T,a3=(2,8,b—1)T;(ii)β1一(2,b+5,一2)T,β2=(3,7,a一4)T,β3=(1,2b十4,一1)i.记A=(α1,α2,α3),B=(β1,β2,β3
设α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T为非零正交向量.A=试求A-1.
设α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T为非零正交向量.A=试求An;
随机试题
律师阅卷的主要目的是()
领导成员因工辞职,应当在接到党委通知后几日内向任免机关提出申请?
柏拉图在《理想国》中要驱除______。()
羊水过少常与哪一种胎儿先天异常并发
神经—肌肉接头释放的兴奋性神经递质是
目前,世界范围内接触人数最多的石棉类型是
某市公安机关为提升对毒品犯罪的精准防控能力,将过去10年抓获的吸毒人员在旅馆住宿的数据进行统计分析,得出如下吸毒人员人住旅馆时间分布图。根据下图,公安机关对吸毒人员重点防控的时间是()。
决定必须由()。
设X1,X2,…,Xn为来自正态总体N(μ0,σ2)的简单随机样本,其中μ0已知,σ2>0未知,和S2分别表示样本均值和样本方差。(Ⅰ)求参数σ2的最大似然估计;(Ⅱ)计算
Writeanessayof160-200wordsbasedonthepicturebelow.Inyouressay,youshould1)describethepicturebriefly,2)
最新回复
(
0
)