首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时 |f(x)|≤M0, |f"’(x)|≤M3, 其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时 |f(x)|≤M0, |f"’(x)|≤M3, 其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
admin
2018-11-21
49
问题
设f(x)在(0,+∞)三次可导,且当
x∈(0,+∞)时
|f(x)|≤M
0
, |f"’(x)|≤M
3
,
其中M
0
,M
3
为非负常数,求证f"(x)在(0,+∞)上有界.
选项
答案
分别讨论x>1与0<x≤1两种情形. 1)当x>1时考察二阶泰勒公式 f(x+1)=f(x)+f’(x)+[*]f"’(ξ) (x<ξ<x+1), f(x一1)=f(x)一f’(x)+[*]f"’(η) (x一1<η<x), 两式相加并移项即得 f"(x)=f(x+1)+f(x一1)一2f(x)+[*][f"’(η)一f"’(ξ)], 则当x>1时有|f"(x)|≤4M
0
+[*]M
3
. 2)当0<x≤1时对f"(x)用拉格朗日中值定理,有 f"(x)=f"(x)一f"(1)+f"(1)=f"’(ξ)(x一1)+f"(1),其中ξ∈(x,1). → |f"(x)|≤|f"’(ξ)||x一1|+|f"(1)|≤M
3
+|f"(1)| (x∈(0,1]). 综合即知f"(x)在(0,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/q4g4777K
0
考研数学一
相关试题推荐
求arctanx带皮亚诺余项的5阶麦克劳林公式.
解下列微分方程:(Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解;(Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)+y″+y′+y=0的通解.
设4元齐次线性方程组(Ⅰ)为而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,0+8)T.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?若有,
过z轴及点M(3,-2,5)的平面方程是__________.
设X和Y为独立的随机变量,X在区间[0,1]上服从均匀分布,Y的概率密度函数为求随机变量Z=X+Y的分布函数Fz(z).
求函数f(x,y)=4x一4y—x2一y2在区域D:x2+y2≤18上的最大值和最小值.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明(1)存在c∈(0,1),使得f(c)=;(2)存在ξ≠η∈(0,1),使得=2.
设X,Y相互独立,都在(0,1)内服从均匀分布,现有区域D0={(x,y)|0≤x≤1,x2≤y≤1)(见下图).(1)若对(X,Y)进行5次独立观察,求至少有一次落在D0内的概率;(2)若要求至少有一次落在D0内的概率不小于0.999,至少要
已知幂级数在x=1处条件收敛,则幂级数的收敛半径为_________。
设a>1,f(t)=at-at在(-∞,+∞)内的驻点为t(a)。问a为何值时,t(a)最小?并求出最小值。
随机试题
感染过程中,血液中最先出现的是()
自主神经系统的功能特点是
消毒的含义是
厌氧菌感染伤口换药选用
选择围堰类型时,必须根据当时当地具体条件,主要原则有()。
用经常性预算收入来偿还到期国债的本息,其实质相当于()。
配制黑火药用的原料是火硝、硫磺和木炭。火硝的质量是硫磺和木炭的3倍,硫磺占原料总量的1/10,要配制这种黑火药320千克,需要木炭多少千克?
按表中数据计算可知,1996年该省房地产业增加值为()。
ThankyouforyourinquiryofOctober1st.Wearenowsendingyouourcatalogtogetherwithsomesamplesofthematerialsyoure
【B1】【B10】
最新回复
(
0
)