首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
正定矩阵, (Ⅰ)求a; (Ⅱ)求当|X|=时XTAX的最大值.
正定矩阵, (Ⅰ)求a; (Ⅱ)求当|X|=时XTAX的最大值.
admin
2013-08-30
77
问题
正定矩阵,
(Ⅰ)求a;
(Ⅱ)求当|X|=
时X
T
AX的最大值.
选项
答案
(Ⅰ)因为方程组有非零解,所以[*] 即a=-1或a=0或a=3,因为A是正定矩阵,所以a
ii
>0(i=1,2,3),所以a=3; (Ⅱ)当a=3时,由|λE-A|=[*] 得A的特征值为1、4、10,因为A为实对称矩阵, [*]
解析
本题应先求出特征值,由题设三阶矩阵要有三个线性无关的特征向量,重特征值对应的线性无关特征向量的个数必须等于特征值的重数,相应的特征矩阵的秩r(λE-A)=n-特征值的重数,由此导出参数应满足的条件
转载请注明原文地址:https://kaotiyun.com/show/qJ54777K
0
考研数学一
相关试题推荐
[*]
(2011年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示,(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.求α和二次型xTAx的表达式;
设函数f(x)在(0,+∞)内具有二阶连续导数,且与f(1)=f’(1)=1.求函数f(r)的表达式.
确定常数a使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(0,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设(x,y)为连续函数,且,其中D是由y=0,y=x2,x=1所围成的区域,求f(x,y).
设矩阵若向量都是方程组Ax=0的解,试证r(A)=2;
设函数z=x(x,y)具有二阶连续导数,变量代换u=ax+y,v=x+by把方程化为求ab。
设f(x,y)与G(x,y)均为可微函数,且G’y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件G(x,y)=0下的一个极值点,下列选项正确的是().
随机试题
关于解热镇痛药下列叙述,正确的有
有以下哪些情况的,对公务员可予以辞退?()
根据我国相关法律规定,满足下列哪些条件,商务部才可决定采取保障措施?(2010年卷一85题,多选)
所谓“人口红利”,是指一个国家的劳动年龄人口占总人口比重较大,抚养率比较低,为经济发展创造了有利的人口条件,整个国家的经济呈高储蓄、高投资和高增长的局面,下图为我国人口年龄结构变化图。据此回答下面各题。我国人口红利最大时期出现在()。
一个人,一个家庭,一个国家,具备了节俭的美德,具有艰苦奋斗的精神,那么,无论环境多么__________,生活多么__________,道路多么__________,都会顽强生存,一步步走出困境,最终走向强盛。依次填入画横线部分最恰当的一项是(
Thelasthalfofthenineteenthcentury______thesteadyimprovementinthemeansoftravel.
A、 B、 C、 D、 D
下列日期型常量的表示中,错误的是()。
Thecustomerexpressedher_____forthatbroadhat.
【S1】【S6】
最新回复
(
0
)