首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1=ex/2+e-x+ex,y2=2e-x+ex,y3=ex/2+ex是某二阶常系数非齐次线性方程的解,则该方程的通解是 ( )
设y1=ex/2+e-x+ex,y2=2e-x+ex,y3=ex/2+ex是某二阶常系数非齐次线性方程的解,则该方程的通解是 ( )
admin
2021-02-25
98
问题
设y
1
=e
x/2
+e
-x
+e
x
,y
2
=2e
-x
+e
x
,y
3
=e
x/2
+e
x
是某二阶常系数非齐次线性方程的解,则该方程的通解是 ( )
选项
A、C
1
e
x/2
+C
2
e
-x
+2e
x/2
+e
-x
+e
x
B、C
1
e
x/2
+C
2
e
-x
+2e
x
+e
-x
C、C
1
e
x
+C
2
e
-x
+3e
x/2
D、C
1
e
x/2
+C
2
e
-x
+2e
x
答案
A
解析
由解的结构定理,知y
1
-y
3
=e
-x
是对应的齐次方程的解.y
1
-y
2
=e
x/2
-e
-x
也是对应的齐次方程的解.
从而Y=e
x/2
是齐次方程的解,且e
x/2
与e
-x
线性无关.
即对应的齐次方程的通解为y=C
1
e
x/2
+C
2
e
-x
.
又y
*
=4y
1
-y
2
-2y
3
=2e
x/2
+e
-x
+e
x
为非齐次方程的解,综上,应选A.
转载请注明原文地址:https://kaotiyun.com/show/qO84777K
0
考研数学二
相关试题推荐
设f(x,y)有连续的偏导数且f(x,y)(ydx+xdy)为某一函数u(x,y)的全微分,则下列等式成立的是
设函数y=f(x)由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是_________.
设f(t)为连续函数,且∫0χtf(2χ-t)dt=ln(1+χ2),f(1)=1,则∫12f(χ)dχ=_______.
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[-2,0)上的表达式;
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
曲线y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕X轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。计算极限S(t)/F(t)
求微分方程xlnxdy+(y一lnx)dx=0满足条件y|x=c1=1的特解.
随机试题
古希腊戏剧起源于___________。悲剧起源于酒神颂歌,喜剧起源于狂欢歌舞和民间滑稽戏。
使用进口工程材料必须符合我国相应的质量标准,并持有商检部门签发的商检合格证书。()
广告的战略目标有()。
关于矿井井底车场的水仓结构,说法正确的是()。
下列各项中,最早记载番薯(甘薯)传入我国的文献是:
中周公司准备在全市围内展开一次证券投资竞赛。在竞赛报名事宜里规定有“没有证券投资实际经验的人不能参加本次比赛”这一条。张全力曾经在很多大的投资公司中实际从事过证券买卖操作。那么.关于张全力.以下哪项是根据上文能够推出的结论?
请阅读有关材料,运用历史唯物主义的有关原理回答问题:材料1爱尔维修说:“我们在人和人之间所见到的精神上的差异,是由于他们所处的不同的环境,由于他们所受的不同的教育所致。”“人是环境的产物。”“造成各个民族的不幸的,并不是人们的卑劣、邪恶
设f(χ)=aχ(a>0,a≠1),则=_______.
SQL中REVOKE是______命令。
以下不正确的定义语句是()。
最新回复
(
0
)