首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
用正交变换法化二次型f(χ1,χ2,χ3)=χ12+χ22+χ32-4χ1χ2-4χ1χ3-4χ2χ3为标准二次型.
用正交变换法化二次型f(χ1,χ2,χ3)=χ12+χ22+χ32-4χ1χ2-4χ1χ3-4χ2χ3为标准二次型.
admin
2019-08-23
55
问题
用正交变换法化二次型f(χ
1
,χ
2
,χ
3
)=χ
1
2
+χ
2
2
+χ
3
2
-4χ
1
χ
2
-4χ
1
χ
3
-4χ
2
χ
3
为标准二次型.
选项
答案
f(χ
1
,χ
2
,χ
3
)=X
T
AX,其中[*] 由|λE-A|=[*]=(λ+3)(λ+3)
2
=0得λ
1
=-3,λ
2
=λ
3
=3. 由(-3E-A)X=0得λ=-3对应的线性无关的特征向量为α
1
=[*]; 由(3E-A)X=0得λ
2
=λ
3
=3对应的线性无关的特征向量为α
2
=[*],α
3
=[*], 将α
2
,α
3
正交化得 [*] 单位化得 [*] 则f(χ
1
,χ
2
,χ
3
)=X
T
AX[*]Y
T
(Q
T
AQ)Y=-3y
1
2
+3y
2
2
+3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/qbA4777K
0
考研数学二
相关试题推荐
设函数,求f(x)的最小值。
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=()
已知是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P—1AP=Λ。
设曲线y=f(x),其中y=(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设函数f(x)在x0处具有二阶导数,且f’(x0)=0,f’’(x0)≠0,证明当f’’(x0)>0,f(x)在x0处取得极小值。
若f’’(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周。设F(x)=∫0xf(t)dt,则下列结论正确的是()[img][/img]
曲线r=a(1﹢cosθ)(常数a>0)在点处的曲率k=_______.
设二二次型f(x1,x2,x3)=ax12+ax22+(a—1)x32+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
随机试题
下列哪项不是致痿的主要病因()(1999年第60;1998年第71题)
慢性肾小球肾炎患者可表现为
窝沟封闭中乳牙的酸蚀时间为
A.包括上下颌牙槽嵴顶的区域,能承担咀嚼压力,抵抗义齿基托的碰撞B.上下颌牙槽嵴的唇侧和舌腭侧区域,不能承受较大的压力C.义齿边缘接触的软组织部分D.无牙颌的上颌隆突、颧突等部位,不能承受咀嚼压力E.为了增加上颌义齿后缘的封闭作用,对组织稍加施压,
双气囊三腔管每次放气时间为
下列哪项不属于中央银行一般采取的紧缩性货币政策工具?()
点M沿平面曲线运动,在某瞬时,速度大小v=6m/s,加速度大小a=8m/s2,两者之间的夹角为30°,如图4—38所示,则点M所在之处的轨迹曲率半径P为()m。
()当事人必须依照法律程序进行,通过向规划部门提出申请,经规划部门批准后方可实施。
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足y’’(x)+p(x)y’(x)-q(x)y(x)=f(x),y(a)=y(b)=0,其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数q0>0使得q(x)≥q0,存在
若有以下定义和语句()。intu=010,v=0x10,w=10; printf("%d,%d,%d\n",u,v,w)
最新回复
(
0
)