首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组(Ⅰ)及线性方程组(Ⅱ)的基础解系 ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
已知线性方程组(Ⅰ)及线性方程组(Ⅱ)的基础解系 ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
admin
2016-07-22
60
问题
已知线性方程组(Ⅰ)
及线性方程组(Ⅱ)的基础解系
ξ
1
=[-3,7,2,0]
T
,ξ
2
=[-1,-2,0,1]
T
.求方程组(I)和(Ⅱ)的公共解.
选项
答案
方程组(Ⅱ)的通解为 k
1
ξ
1
+k
2
ξ
2
=k
1
[-3,7,2,0]
T
+k
2
[-1,-2,0,1]
T
=[-3k
1
-k
2
,7k
1
-2k
2
,2k
1
,k
2
]
T
. 其中k
1
,k
2
是任意常数,将该通解代入方程组(Ⅰ)得: 3(-3k
1
-k
2
)-(7k
1
-2k
2
)+8(2k
1
)+k
2
=-16k
1
+16k
1
-3k
2
+3k
2
=0, (-3k
1
-k
2
)+3(7k
1
-2k
2
)-9(2k
1
)+7k
2
=-21k
1
+21k
1
-7k
2
+7k
2
=0, 即方程组(Ⅱ)的通解均满足方程组(Ⅰ),故(Ⅱ)的通解-- k
1
[-3,7,2,0]
T
+k
2
[-1,-2,0,1]
T
. 即是方程组(Ⅰ),(Ⅱ)的公共解.
解析
转载请注明原文地址:https://kaotiyun.com/show/qcw4777K
0
考研数学一
相关试题推荐
设y=y(x)是y’’+2y+y=e3x满足y(0)=y’(0)=0的解,则当x=0时,与y(x)为等价无穷小的是()
设P(x0,y0)为椭圆3x2+a2y2=3a2(a>0)在第一象限部分上的一点,已知在P点处椭圆的切线、椭圆及两坐标轴所围图形D的面积的最小值为2(1-1/4π)求D绕x轴旋转一周所得旋转体的体积V
一个容器的内侧是由x2+y2=1(y≤1/2)绕y轴旋转一周而成的曲面,长度单位为m,重力加速度为g(m/s2),水的密度为p(kg/m3)若将容器内盛满的水从顶端全部抽出,至少需做功多少?
设α,β是3维单位正交列向量,则二次型f(x1,x2,x3)=xT(2ααT+ββT)x的规范形为()
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵,若AB=E,则().
设A为n阶方阵,B是A经过若干次初等变换后所得到的矩阵,则有().
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
因为二次型xTAx经正交变换化为标准形时,标准形中平方项的系数就是二次型矩阵A的特征值,所以6,0,0是A的特征值,又因为∑aij=∑λi,所以a+a+a=b+0+0→a=2.
随机试题
简述政党政治的主要内容。
下列关于急性肾衰竭时心力衰竭的描述,正确的是
痰阻於骨节.经络证的主方是
关于中药饮片用药指导内容与要点,下列说法错误的是
立式设备采用硬质或半硬质制品保温施工时,需设置(),并从该处开始自下而上拼砌。
在企业内部落实质量体系的内部审核程序,其目的是()。
()是指划分上下级旅游投诉处理机构之间对处理投诉案件的分工和权限。
如今的房地产市场空气中,总是若隐若现地________着利空的味道。对于并没有实打实的完成多元化发展途径的地方政府来说,习惯于躺在房产功劳簿上睡大觉的好梦将被________。于是乎,在感觉到“头痛”的时候,自然会有种“医头”的反应出现。经过几次智囊团的_
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
TheBibleitselfcontainsatotalof66booksandisdividedinto,twoparts,theOldTestamentandtheNewTestament.TheOldT
最新回复
(
0
)