首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0。 试证这三条直线交于一点的充分必要条件为a+b+c=0。
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0。 试证这三条直线交于一点的充分必要条件为a+b+c=0。
admin
2018-04-08
53
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0。
试证这三条直线交于一点的充分必要条件为a+b+c=0。
选项
答案
必要性。 设三条直线l
1
,l
2
,l
3
交于一点,那么线性方程组 [*] 有唯一解,故系数矩阵 [*] 的秩均为2,于是有[*] 由于 [*] =6(a+b+c)(a+b
2
+c
2
-ab-ac-bc) =3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
],但根据题设(a一b)
2
+(b-c)
2
+(c-a)
2
≠0,故a+b+c=0。 充分性。 由a+b+c=0,且从必要性的证明可知,[*]由于 [*] 故r(A)=2。所以r(A)=[*]=2。 因此方程组(*)有唯一解,即三直线l
1
,l
2
,l
3
交于一点。
解析
转载请注明原文地址:https://kaotiyun.com/show/qlr4777K
0
考研数学一
相关试题推荐
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k__________.
下列矩阵中不能相似于对角阵的矩阵是()
下列矩阵中能相似于对角阵的矩阵是()
设(1)计算A2,并将A2用A和E表出;(2)设A是二阶方阵,当k>2时,证明:Ak=0的充分必要条件为A2=0.
曲线y=(x一1)2(x一3)2的拐点个数为()
在时刻t=0时开始计时,设事件A1,A2分别在时刻X,Y发生,X和Y是相互独立的随机变量,其概率密度分别为求A1先于A2发生的概率.
设总体X的概率分布为其中θ∈(0,1)未知,以Ni来表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3),试求常数a1,a2,a3使为θ的无偏估计量,并求T的方差.
已知事件A、B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为________.
随机试题
A.瞳孔开大肌B.瞳孔括约肌C.睫状肌D.外直肌E.上睑提肌上睑下垂可能是由于哪块肌病变造成
脑膜炎双球菌脑膜炎选择肺炎链球菌脑膜炎选择
《医学心悟》:“本方温润和平,不寒不热,既无攻击过当之虞,大有启门驱贼之势。”所指何方
关于庆大霉素的叙述中错误的是
对银行而言,质押贷款的特点包括()
根据城镇土地使用税法律制度的规定,下列城市用地中,应缴纳城镇土地使用税的有()。
从20世纪90年代“人类基因工程”计划启动之日起,美国,日本,欧洲等展开了一场激烈的基因专利争夺战,因为谁拥有专利,就意味着谁能在国际上获得________基因产业的“王牌”,谁就能拥有今后基因开发的庞大市场,为此,美国等少数发达国家大量地将阶段性研究成果
“如果你们走在时代观念之前,这些观念就会紧随并支持你们;如果你们走在时代观念之后,它们便会拉着你们向前;如果你们逆着时代观念而行,它们就将推翻你们。”对此,下列理解正确的是
某公司签署的服务器运维项目的核算表如下所示,该项目已结项,其投资回报率为(52)________。
TwoCulturalDimensionsCultureisthecollectiveprogrammingofthemindwhichdistinguishesthemembersofonecategoryofpeo
最新回复
(
0
)