首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
admin
2018-05-23
37
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),AB=(γ
1
,γ
2
,…,γ
n
),记向量组(Ⅰ):α
1
,α
2
,…,α
n
;(Ⅱ):β
1
,β
2
,…,β
n
;(Ⅲ):γ
1
,γ
2
,…,γ
n
,若向量组(Ⅲ)线性相关,则( ).
选项
A、(Ⅰ),(Ⅱ)都线性相关
B、(Ⅰ)线性相关
C、(Ⅱ)线性相关
D、(Ⅰ),(Ⅱ)至少有一个线性相关
答案
D
解析
若α
1
,α
2
,…,α
n
线性无关,β
1
,β
2
,…,β
n
线性无关,则r(A)=n,r(B)=n,于是r(AB)=n.因为γ
1
,γ
2
,…,γ
n
线性相关,所以r(AB)=r(γ
1
,γ
2
,…,γ
N
)<n,故α
1
,α
2
,…,α
n
与β
1
,β
2
,…,β
n
至少有一个线性相关,选(D).
转载请注明原文地址:https://kaotiyun.com/show/qsg4777K
0
考研数学一
相关试题推荐
设总体X的概率密度函数为f(x)=其中λ>0为未知参数,又X1,X2,…,Xn为取自总体X的一组简单随机样本.求λ的最大似然估计.
在曲面S:2x2+y2+z2=1上求一点,使函数u=x2+y2+z2在该点沿方向i=j-k的方向导数最大.
设y=y(x)(x>0)是微分方程2yˊˊ+yˊ-y=(4—6x)e-x的一个解,且求y(x),并求y=y(x)到x轴的最大距离
设f(x)二阶可导且满足,则f(x)=________
a,b取何值时,方程组有唯一解、无解、有无穷多个解?有无穷多个解时,求出其通解
设∑为由直线绕x轴旋转产生的曲面,则∑上点P=(-1,1,-2)处的法线方程为()
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵.(1)计算PTDP,其中P=,(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程y"+ay’+by=cex的一个特解,试确定常数a,b,c及该方程的通解.
设F(χ,y)在点(χ0,y0)某邻域有连续的偏导数,F(χ0,y0)=0,则F′y(χ0,y0)≠0是F(χ,y)=0在点(χ0,y0)某邻域能确定一个连续函数y=y(χ),它满足y0=y(χ0),并有连续的导数的_______条件.
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是_______
随机试题
平面截切正圆锥可能出现哪些情形?
水泥混凝土()等与建筑物连接处应设缝处理。
下列()状况的出现,表示基差走弱。Ⅰ.7月时大商所豆粕9月合约基差为4元/吨,到8月时为3元/吨Ⅱ.7月时大商所豆油9月合约基差为5元/吨,到8月时为-1元/吨Ⅲ.7月时上期所阴极铜9月合约基差为-2元//吨,到8月时为-6元/吨
我国中央银行的类型是()。
下列关于党的十八大提出的“形成合理有序的收入分配格局”的说法中,正确的有()。
融资租人的固定资产,以租赁合同约定的付款总额和承租人在签订租赁合同过程中发生的相关费用为企业所得税计税基础。()
股份有限公司采用溢价发行股票方式筹集资本,其股本科目所登记的金额是()。
浙江的少数民族中人口最多的民族是哪一个?()
我国劳动力市场工资指导价位制度的具体目标包括()
SomeofmyfondestmemoriesarewhenI’veputtogetheralargegroupoffriendsanddidnothingbut______.
最新回复
(
0
)