首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是m×n矩阵,已知Em+AB可逆. (Ⅰ)验证En+BA可逆,且(E+BA)-1=E—B(Em+AB)-1A; (Ⅱ)设其中a1b1+a2b2+a3b3=0. 证明:W可逆,并求W-1.
设A是m×n矩阵,B是m×n矩阵,已知Em+AB可逆. (Ⅰ)验证En+BA可逆,且(E+BA)-1=E—B(Em+AB)-1A; (Ⅱ)设其中a1b1+a2b2+a3b3=0. 证明:W可逆,并求W-1.
admin
2016-04-14
51
问题
设A是m×n矩阵,B是m×n矩阵,已知E
m
+AB可逆.
(Ⅰ)验证E
n
+BA可逆,且(E+BA)
-1
=E—B(E
m
+AB)
-1
A;
(Ⅱ)设
其中a
1
b
1
+a
2
b
2
+a
3
b
3
=0.
证明:W可逆,并求W
-1
.
选项
答案
在不存在歧义的情况下,简化记号,省略E的下标m,n. (Ⅰ)因(E+BA)[E—B(E+AB)
-1
A] =E+BA一B(E+AB)
-1
A—BAB(E+AB)
-1
A =E+BA一B(E+AB)(E+AB)
-1
A =E+BA一BA=E, 故E+BA可逆,且(E+BA)
-1
=E—B(E+AB)
-1
A. [*] 由(Ⅰ)知E+AB可逆,则E+BA可逆,N(E+BA)
-1
=E-B(E+AB)
-1
A. 反之若E+BA可逆,则E+仙可逆,且(E+AB)
-1
=E-A(E+BA)
-1
B. 因为E+BA=E+(b
1
,b
2
,b
3
)[*]=E+[a
1
b
1
+a
2
b
2
+a
1
b
3
]=E+0=E, 故E+BA可逆,(E+BA)
-1
=E. 故W=E+AB可逆,且 W
-1
=E—A(E+BA)
-1
B=[*].E.(b
1
,b
2
,b
3
)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/quw4777K
0
考研数学一
相关试题推荐
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点.(Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
设函数f(x)在区间[-1,1]上连续,则x=0是函数的().
设,f具有连续二阶偏导数,则
设f(x)有连续的导数,f(0)=0且fˊ(0)=b,若函数在x=0处连续,则常数A=_______.
设f(x)=在(-∞,+∞)上连续,试确定常数a,b.
微分方程y’cosy=x-siny的通解为________
利用换元法计算下列二重积分:设f(t)为连续函数,证明:f(x+y)dxdy=∫-11f(t)dt,D:|x|+|y|≤1.
设函数P(x),q(x),f(x)在区间(a,b)上连续,y1(x),y2(x),y3(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c1,c2为两个任意常数,则该方程的通解是().
可微函数f(x,y)在点(x0,y0)取得极大值,下列结论正确的是().
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
随机试题
netposition
血站违反献血法规定,向医疗机构提供不符合国家规定标准的血液的,应当医疗机构的医务人员违反献血法规定,将不符合国家规定标准的血液用于患者的应当
患者,女,55岁。近1年来反复出现颜面及下肢浮肿,面色无华,乏力气短,腰膝酸软,五心烦热,咽干,舌红,少苔,脉沉细。尿蛋白(++),伴有镜下血尿。应首先考虑的诊断是()
王某代甲公司与乙公司签订合同的行为属于什么性质?甲公司是否应向乙公司支付货款?
使用降阻剂时,一般认为垂直极灌降阻剂直径以( )为好。
甲企业为增值税一般纳税人,与客户签订合同销售一批商品,由于货款收回存在较大不确定性,甲企业未确认该项业务的销售收入,商品已经发出且纳税义务已发生,假定不考虑其他因素,下列关于该项销售业务的会计处理中正确的有()。
羽毛球世界锦标赛在巴黎举行,中国女子羽毛球队的小蒋、小朱和小梁报名参加女子单打的资格赛。她们三人至少有一入取得了参赛资格。已知:(1)所有资格赛成绩合格的报名者在各种尿检中只有呈阴性才能获得参赛资格。(2)她们三人全部通过了资格赛,而且
Howmanyplanetsarethereinthesolarsystemrevolvingaroundthesun?
A、Harmtosingersdonebysmokyatmospheres.B、Sideeffectsofsomecommondrugs.C、Voiceproblemsamongpopsingers.D、Hardship
Aristotledefinedafriendas"asinglesouldwellingintwobodies".Howmanyfriendswehave,andhoweasilywemake,maintain
最新回复
(
0
)