首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某可微函数u(x,y)的全微分.求f(x)及u(x,y).
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某可微函数u(x,y)的全微分.求f(x)及u(x,y).
admin
2018-07-26
51
问题
设f(x)具有一阶连续导数,f(0)=0,且表达式
[xy(1+y)一f(x)y]dx+[f(x)+x
2
y]dy
为某可微函数u(x,y)的全微分.求f(x)及u(x,y).
选项
答案
由题设知存在可微函数u(x,y),使du(x,y)=[xy(1+y)一f(x)y]dx+[f(x)+x
2
y]dy, 于是知[*] 又因f(x)具有一阶连续导数,故[*]连续且相等,于是有 [*] 即f'(x)+f(x)=x,此为一阶线性微分方程,结合条件f(0)=0解得f(x)=x一1+e
-x
. 所以 du(x,y)=[xy(1+y)一y(x一1+e
-x
)]dx+(x-1+e
-x
+x
2
y)dy =(xy
2
+y—ye
-x
)dx+(x-1+e
-x
+x
2
y)dy. 由du(x,y)的表达式求u(x,y)有多种方法. 法一 凑原函数法.此方法有技巧性,要求读者对用微分形式不变性求微分相当熟练. [*] 所以[*](C为任意常数). 法二 偏积分法.由du(x,y)的表达式知 [*] 所以[*] 其中ψ(y)对y可微.由题设知[*] 于是有[*] 则ψ(y)=一1,即ψ'(y)=-y+C(C为任意常数). 所以[*](C为任意常数) 法三 用第二型曲线积分求原函数.由所给的du(x,y)知,它的[*]中的P(x,y)与Q(x,y)在全平面具有连续的一阶偏导数且 [*] 故可以用第二型曲线积分,取起点为(0,0)较方便,计算 [*] 由于此曲线积分与路径无关,取折线(0,0)→(0,y)→(x,y),于是 [*] 所以u(x,y)=1/2 x
2
y
2
+xy+ye
-x
一y+C(C为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/r8g4777K
0
考研数学一
相关试题推荐
∫0nπx|cosx|dx
计算下列定积分:
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设A为n阶矩阵,且|A|=0,则A().
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放回,求第二次抽取次品的概率.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=,求方程组AX=b的通解.
设A是m×n阶矩阵,下列命题正确的是().
设L为从点A(0,一1,1)到点B(1,0,2)的直线段,则∫L(x+y+z)ds=___________.
设{nan}收敛,且收敛.
设X1,X2,…,X12是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
随机试题
"Congratulations,Mr.Jones,it’sagirl."Fatherhoodisgoingtohaveadifferentmeaningandbringforthadifferentrespo
A.红霉素B.罗红霉素C.克拉霉素D.克林霉素E.四环素与奥美拉唑一替硝唑三联治疗胃溃疡的是
39.关于司法的表述,下列哪些选项可以成立?()(2007年司考,卷一,第54题)
居住区内道路分为居住区道路、小区路、组团路和宅间小路,下列关于它们的表述哪项是不确切的?
关于中标人违法行为应承担的法律责任的规定,下列表述中错误的是()。
债券型理财产品中汇率风险,表现为本外币汇率的不可预测性。()
性格的个别差异主要表现在________和________两个方面。
一个圆形的草地中央有一个与之同心的圆形花坛,在花坛圆周和草地圆周上各有3个不同的点,安放了洒水的喷头,用直管将这些喷头连上,要求任意两个喷头都能被一根水管连通,问最少需要几根水管?(一根水管上可以连接多个喷头)
A、Familydebts.B、Banksavings.C、Monthlybills.D、Spendinghabits.D细节题。文中提到,如果你想省钱(cutcorners),你应该注意到一个明显的方面,那就是你的消费习惯(spendi
A、Thetestwillprobablyincludethenotes.B、Thetestwillprobablynotincludethenotes.C、Thecoursewillneednotesforthe
最新回复
(
0
)