首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某可微函数u(x,y)的全微分.求f(x)及u(x,y).
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某可微函数u(x,y)的全微分.求f(x)及u(x,y).
admin
2018-07-26
29
问题
设f(x)具有一阶连续导数,f(0)=0,且表达式
[xy(1+y)一f(x)y]dx+[f(x)+x
2
y]dy
为某可微函数u(x,y)的全微分.求f(x)及u(x,y).
选项
答案
由题设知存在可微函数u(x,y),使du(x,y)=[xy(1+y)一f(x)y]dx+[f(x)+x
2
y]dy, 于是知[*] 又因f(x)具有一阶连续导数,故[*]连续且相等,于是有 [*] 即f'(x)+f(x)=x,此为一阶线性微分方程,结合条件f(0)=0解得f(x)=x一1+e
-x
. 所以 du(x,y)=[xy(1+y)一y(x一1+e
-x
)]dx+(x-1+e
-x
+x
2
y)dy =(xy
2
+y—ye
-x
)dx+(x-1+e
-x
+x
2
y)dy. 由du(x,y)的表达式求u(x,y)有多种方法. 法一 凑原函数法.此方法有技巧性,要求读者对用微分形式不变性求微分相当熟练. [*] 所以[*](C为任意常数). 法二 偏积分法.由du(x,y)的表达式知 [*] 所以[*] 其中ψ(y)对y可微.由题设知[*] 于是有[*] 则ψ(y)=一1,即ψ'(y)=-y+C(C为任意常数). 所以[*](C为任意常数) 法三 用第二型曲线积分求原函数.由所给的du(x,y)知,它的[*]中的P(x,y)与Q(x,y)在全平面具有连续的一阶偏导数且 [*] 故可以用第二型曲线积分,取起点为(0,0)较方便,计算 [*] 由于此曲线积分与路径无关,取折线(0,0)→(0,y)→(x,y),于是 [*] 所以u(x,y)=1/2 x
2
y
2
+xy+ye
-x
一y+C(C为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/r8g4777K
0
考研数学一
相关试题推荐
一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,求E(X),D(X).
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设两台同样的记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当发生故障时停用而另一台自动开动.求两台记录仪无故障工作的总时间T的概率密度.
设f(x)在x=a处二阶可导,证明:=f"(a).
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
已知,求a,b的值.
设f(x)二阶连续可导,且曲线积分∫[3f’(x)一2f(x)+xe2x]ydx+f’(x)dy与路径无关,求f(x).
设{nan}收敛,且收敛.
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
随机试题
知识管理的起点是()
在减敏治疗中,诱导机体产生的封闭抗体的是
()是反映项目负债水平和偿债能力的综合指标。
目前,国际上最通用的项目管理模式为()。
下列句子中,标点符号使用符合规范的是()。
中(1)班有一个现象:一个孩子向杨老师“告状”,其他孩子就会一个接一个地“告状”。孩子们吵吵嚷嚷,班上乱成一锅粥。杨老师恰当的处理方式是()
下列做法符合我国法律规定的是()。
下列关于自然现象的说法错误的是()。
结合材料.回答问题:材料1建设生态文明,是关系人民福祉、关乎民族未来的长远大计。面对资源约束趋紧、环境污染严重、生态系统退化的严峻形势,必须树立尊重自然、顺应自然、保护自然的生态文明理念,把生态文明建设放在突出地位,融入经济建设、政治建设、文化建设、社
近几年来,“2012世界末日论"引起了不少人的恐慌。其实,各国专家都已经对此进行驳斥,所谓的“末日”根本就是子虚乌有。然而有一位本应具备“高素质”的女高工、大学教授仍“深信不疑”,急捐出全部钱物。诸如此类现象,被我们称为“伪科学”。中科院院士说:伪科学活动
最新回复
(
0
)