首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
admin
2019-07-12
66
问题
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是( )
选项
A、若u
1
>u
2
,则(u
n
}必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
,则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
方法一:设f(x)=x
2
,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
<u
2
,但{u
n
}={n
2
}发散,排除C;
设
则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但
收敛.排除B;
设f(x)=一lnx,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但{u
n
}={一lnn}发散,排除A。故应选D。
方法二:由拉格朗日中值定理,有
u
n+1
一u
n
=f(n+1)一f(n)=f′(ξ
n
)(n+1—n)=f′(ξ
n
),
其中n<ξ
n
<n+1(n=1,2,…)。
由f"(x)>0知,f′(x)单调增加,故
f′(ξ
1
)<f′(ξ
2
)<…<f′(ξ
n
)<…,
所以
于是当u
2
一u
1
>0时,有
故选D。
转载请注明原文地址:https://kaotiyun.com/show/rHc4777K
0
考研数学一
相关试题推荐
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放多个球,计算下列事件的概率:B={每个盒子中最多只有一个球};
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是r(B)=n.
(1)设连续型随机变量X的r阶绝对矩E(|X|r),r>0存在,证明对任何ε>0,有(2)设X1,X2,…,Xn为来自正态总体X~N(μ,σ2)的一个简单随机样本.已知an>0,且是σ2的一致估计.
设a1,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn求可逆矩阵P,使P-1AP=A.
设函数f(x)在区间(-δ,δ)内有定义,若当x∈(-δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
设∑是部分锥面:x2+y2=z2,0≤z≤1,则曲面积分(x2+y2)dS等于()
设D是有界闭区域,下列命题中错误的是
设f(x)可导f(0)﹦0,f’(0)﹦2,F(x)﹦∫x0t2f(x3-t2)dt,g(x)﹦,则当x→0时,F(x)是g(x)的()
设f(x)=∫0xdt∫0ttln(1+μ2)dμ,g(x)=∫0sinx2(1一cost)dt,则当x→0时,f(x)是g(x)的().
[2018年]若,则k=______.
随机试题
BrightonisapopularseasidetownonthesouthcoastofEngland.Notlongago,somepolicemenwerevery【21】.There【22】severals
A.白秃癣B.肥疮C.鹅掌风D.脚湿气E.圆癣皮损以发于趾缝间的皮下水泡,趾间浸润糜烂,渗流滋水,角化过度,脱屑为特征,夏重冬轻,属于()
在下列方法中,属于精神分析治疗常用的是
孙某因犯抢劫罪被甲县人民法院判处有期徒刑6年,判决生效后被送至乙县监狱服刑。第二年5月6日,孙某越狱脱逃。孙某的同监犯人张某向监狱告发:孙某跟他说过其在丙县强奸一女青年,经查属实。孙某越狱后在丁县抢劫某饭店过程中被捕获归案。本案最后归哪个法院管辖?(
证券自营业务买卖对象除了上市证券外,还包括非上市证券。( )
企业法人的内部单位均不得申请开立基本存款账户。()
简述语言的特征。
求
Hemusthavecomehereyesterdayevening,______he?
A、Heshouldoftendosunbathing.B、Heshouldoftentakehotbaths.C、Heshouldwarmhimselfupbysittingbythestove.D、Hesho
最新回复
(
0
)