首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
admin
2019-07-12
44
问题
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是( )
选项
A、若u
1
>u
2
,则(u
n
}必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
,则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
方法一:设f(x)=x
2
,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
<u
2
,但{u
n
}={n
2
}发散,排除C;
设
则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但
收敛.排除B;
设f(x)=一lnx,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但{u
n
}={一lnn}发散,排除A。故应选D。
方法二:由拉格朗日中值定理,有
u
n+1
一u
n
=f(n+1)一f(n)=f′(ξ
n
)(n+1—n)=f′(ξ
n
),
其中n<ξ
n
<n+1(n=1,2,…)。
由f"(x)>0知,f′(x)单调增加,故
f′(ξ
1
)<f′(ξ
2
)<…<f′(ξ
n
)<…,
所以
于是当u
2
一u
1
>0时,有
故选D。
转载请注明原文地址:https://kaotiyun.com/show/rHc4777K
0
考研数学一
相关试题推荐
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xn与Y1,Y2,…,Yn是分别来自总体X与Y的两个相互独立的简单随机样本,统计量服从t(n)分布,则=()
求微分方程y’’+5y’+6y=2e-x的通解.
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=2,…,n-1),f(n)(x0)≠0(n>2).证明:当n为奇数时,(x0,f(x0))为拐点.
f(x)在(-∞,+∞)上连续,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
求下列幂级数的收敛域或收敛区间:(Ⅲ)anxn的收敛半径R=3;(只求收敛区间)(Ⅳ)ax(x一3)n,其中x=0时收敛,x=6时发散.
(1999年)设f(x)是连续函数,F(x)是f(x)的原函数,则
(1999年试题,二)设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则().
随机试题
为了发挥专家的核心作用,减轻直线主管的任务负荷并提高管理工作效率而设立的职权是()
大便呈柏油样见于
A.牙源性颌骨囊肿B.发育性囊肿C.阻塞性囊肿D.牙源性肿瘤E.孤立性囊肿第二鳃裂囊肿属于
下列关于β一CD包合物优点的不正确表述是
在投入期,薄利多销的定价办法又称为()。
(2008年第4题)阅读下面短文,回答问题:有记忆的金属1963年,美国海军研究所在研究镍钛合金时,发现一种奇怪的现象:一些已经被拉直了的镍钛合金丝,无意中被火烘烤后,又恢复到原来的弯曲形状。这一现象说明这种镍钛合金具有一种形状记忆功能。所谓形状记忆功能
Ithinkwemustmakeimportantdecisionssoon.Weneedtodecidehowtodevelopournaturalresourcesandmineralwealthwithout
Youcannotfinishthetermpaperontimebecauseyoujoinedtheschool-organizedfieldpracticeprograminGuangzhouinthesumm
A、Itiswelldesigned.B、Itisratherinflexible.C、Itvariesamonguniversities.D、Ithasundergonegreatchanges.B
Successdoesnotcomeeasilytoasmallbusiness.TheUnitedStatesSmallBusinessAdministrationsaysfiftypercentofsmallbu
最新回复
(
0
)