首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
admin
2019-07-12
40
问题
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是( )
选项
A、若u
1
>u
2
,则(u
n
}必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
,则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
方法一:设f(x)=x
2
,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
<u
2
,但{u
n
}={n
2
}发散,排除C;
设
则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但
收敛.排除B;
设f(x)=一lnx,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但{u
n
}={一lnn}发散,排除A。故应选D。
方法二:由拉格朗日中值定理,有
u
n+1
一u
n
=f(n+1)一f(n)=f′(ξ
n
)(n+1—n)=f′(ξ
n
),
其中n<ξ
n
<n+1(n=1,2,…)。
由f"(x)>0知,f′(x)单调增加,故
f′(ξ
1
)<f′(ξ
2
)<…<f′(ξ
n
)<…,
所以
于是当u
2
一u
1
>0时,有
故选D。
转载请注明原文地址:https://kaotiyun.com/show/rHc4777K
0
考研数学一
相关试题推荐
曲线L:在平面xOy上的投影柱面方程是()
函数f(x,y)=x4-3x2y2+x-2在点(1,1)处的二阶泰勒多项式是()
设的收敛半径、收敛区间与收敛域.
若是(-∞,+∞)上的连续函数,则a=______.
已知α1=[一1,1,a,4]T,α2=[-2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则n的取值范围为()
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
设α1,α2,…,αs是n维向量,则下列命题中正确的是
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价.(2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
设,则当x→0时,两个无穷小的关系是().
(1999年)
随机试题
常用麝香草酚酒精的浓度是
下列说法错误的是:()
对国有企业改革中涉及的划拨土地使用权,下列(),经批准可保留划拨土地使用权。
统计指标的两个主要特点是( )。
简述中华人民共和国成立的历史意义。
你是单位领导,一位朋友的孩子在你单位。朋友让你平时多照顾一下他的孩子,你怎么做?
一、注意事项 1.《申论》考试,与传统作文考试不同,是对分析材料的能力、表达能力的考试。 2.作答参考时限:阅读资料40分钟,作答110分钟。 3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、资料1.据称,如果从正规
Accordingtothepassage,somepeoplestartedanationalassociationsoasto______.Bysayingthatthebombalsohasadeterre
文化强国,是指这个国家具有强大的文化力量。建设社会主义文化强国
Whatdoesthewomanplantodotomorrow?
最新回复
(
0
)