首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
admin
2019-07-12
61
问题
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是( )
选项
A、若u
1
>u
2
,则(u
n
}必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
,则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
方法一:设f(x)=x
2
,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
<u
2
,但{u
n
}={n
2
}发散,排除C;
设
则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但
收敛.排除B;
设f(x)=一lnx,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但{u
n
}={一lnn}发散,排除A。故应选D。
方法二:由拉格朗日中值定理,有
u
n+1
一u
n
=f(n+1)一f(n)=f′(ξ
n
)(n+1—n)=f′(ξ
n
),
其中n<ξ
n
<n+1(n=1,2,…)。
由f"(x)>0知,f′(x)单调增加,故
f′(ξ
1
)<f′(ξ
2
)<…<f′(ξ
n
)<…,
所以
于是当u
2
一u
1
>0时,有
故选D。
转载请注明原文地址:https://kaotiyun.com/show/rHc4777K
0
考研数学一
相关试题推荐
设S为平面x-y+z=1介于三坐标平面间的有限部分,法向量与z轴交角为锐角,f(x,y,z)连续,计算I=[f(x,y,z)+x]dydz+[2f(x,y,z)+y]dzdx+[f(x,y,z)+x]dxdy.
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1-e-λx的概率密度fY(y).
设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解(其中C为任意常数)是()
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关;(2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
求极限
设α1,α2,…,αs是n维向量,则下列命题中正确的是
设A,B是任意两个随机事件,又知BA,且P(A)<P(B)<1,则一定有
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
设f(x)有一阶连续导数,f(0)=0,当x→0时,与x2为等价无穷小,则f’(0)等于
[2012年]证明
随机试题
能够引起劳动法律关系产生的劳动法律事实是()
乙型血友病缺乏的因子为
雷尼替丁为
框架一剪力墙结构中,主要承受水平荷载的是()。
某外资企业出口一批男式全羊毛西服,该批西服分别用85%的进料加工料件和15%的国产原料加工而成,请问该企业在向海关办理出口申报手续时应填写哪种报关单?()
下列各项目中,不属于企业应当披露的重要会计政策的是()。
市场调查研究分析工作主要包括________。
为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了()株黄瓜,并可估计这个新品种黄瓜平均每株结()根黄瓜。
DM和______是同义词。
Lookatthestatementsandtheshortnewsbelow.Whichnewsdoeseachstatement1-7referto.Foreachsentence,markonelette
最新回复
(
0
)