首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
admin
2019-07-12
36
问题
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是( )
选项
A、若u
1
>u
2
,则(u
n
}必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
,则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
方法一:设f(x)=x
2
,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
<u
2
,但{u
n
}={n
2
}发散,排除C;
设
则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但
收敛.排除B;
设f(x)=一lnx,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但{u
n
}={一lnn}发散,排除A。故应选D。
方法二:由拉格朗日中值定理,有
u
n+1
一u
n
=f(n+1)一f(n)=f′(ξ
n
)(n+1—n)=f′(ξ
n
),
其中n<ξ
n
<n+1(n=1,2,…)。
由f"(x)>0知,f′(x)单调增加,故
f′(ξ
1
)<f′(ξ
2
)<…<f′(ξ
n
)<…,
所以
于是当u
2
一u
1
>0时,有
故选D。
转载请注明原文地址:https://kaotiyun.com/show/rHc4777K
0
考研数学一
相关试题推荐
假设G={(x,y)|x2+y2≤r2},而随机变量X和Y的联合分布是在区域G上的均匀分布.试确定随机变量X和y的独立性和相关性.
求
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:使用的最初150小时内,至少有两个电子管被烧坏的概率;
已知A是n阶方阵,E是n阶单位矩阵,且A3=E,则=()
判别下列级数的敛散性(k>1,a>1):
设向量α=[a1,a2,…,a2]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
求幂级数的和.
设总体X~N(μ1,σ2),Y~N(μ2,σ2).从总体X,Y中独立地抽取两个容量为m,n的样本X1,X2,…,XN和Y1,Y2,…,Yn.记样本均值分别为是σ2的无偏估计.求:(1)C;(2)Z的方差DZ.
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于60000元的概率γ.
设A,B为随机事件,P(B)>0,则()
随机试题
左图为等大的3个灰色正方体和15个白色正方体组合成的多面体,其可以切割为①、②和③三个小多面体,则③代表的多面体可能是:
差动接收机串接于两个力矩式发送机之间,接收其电信号,并使自身转子转角为两发送机转角的()。
为了测量故障的分布,以便更好地了解和消除这些原因的试验方式是()
平胃散的适应证是八正散的适应证是
下述关于所有权的理解,错误的有:()
所谓(),是指特定立体控制的、不具有独立实体、对生产经营持续发挥作用并带来经济利益的一切经济资源。
在破产程序中,债务人与债权人会议达成的和解协议发生效力后,应受和解协议约束的债权人是()。
甲、乙、丙三队进行足球循环赛。已知有下列情况:根据上表情况,可以得出甲队对丙队的进球数之比是()。
如果一台CiscoPIX525防火墙有如下配置:pix525(con6g)}#nameifethemet0p1security100pix525(config)#nameifethernet1p2security0pix525
Whatisthenewsitemmainlyabout?
最新回复
(
0
)