首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Ax=β必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Ax=β必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1
admin
2021-02-25
112
问题
已知n维向量组α
1
,α
2
,…,α
n
中,前n-1个线性相关,后n-1个线性无关,若令β=α
1
+α
2
+…+α
n
,A=(α
1
,α
2
,…,α
n
).试证方程组Ax=β必有无穷多组解,且其任意解(α
1
,α
2
,…,α
n
)
T
中必有α
n
=1
选项
答案
由题设β=α
1
+α
2
+…+α
n
,可得 [*] 则向量η=(1,1,…,1)
T
是方程组Ax=β的解,由此知方程组Ax=β有解,故r(A)=r(A,β). 由题设知α
1
,α
2
,…,α
n-1
线性相关,推得α
1
,α
2
,…,α
n
线性相关,而又由题设知α
2
,α
3
,…,α
n
线性无关,所以向量组α
1
,α
2
,…,α
n
的秩为n-1,从而r(A)=n-1. 综上可知,r(A)=r(A,β)=n-1<n.故方程组Ax=β有无穷多组解,并且其对应齐次线性方程组Ax=0的基础解系由n-(n-1)=1个非零解组成. 又由α
1
,α
2
,…,α
n-1
线性相关可知,存在不全为零的数λ
1
,λ
2
,…,λ
n-1
,使 λ
1
α
1
+λ
2
α
2
+…+λ
n-1
α
n-1
=0. 由此推得 [*] 所以非零向量(λ
1
,λ
2
,…,λ
n-1
,0)
T
是Ax=0的解,因而是Ax=0的一个基础解系,故Ax=β的通解 x=k(λ
1
,λ
2
,…,
n-1
,0)
T
+(1,1,…,1,1)
T
,其中k为任意常数, 且显见a
n
=1.
解析
本题考查非齐次线性方程组通解的结构和向量组线性相关性的有关理论.是一道抽象方程组求解的证明题.
转载请注明原文地址:https://kaotiyun.com/show/ra84777K
0
考研数学二
相关试题推荐
构造正交矩阵Q,使得QTAQ是对角矩阵
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设u=u(χ,y)有二阶连续偏导数,证明:在极坐标变换χ=rcosθ,y=rsinθ下有
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P—1AP=B。
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
微分方程y〞+y=-2x的通解为_________.
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
设y1(x),y2(x)是微分方程yˊˊ+pyˊ+qy=0的解,则由y1(x),y2(x)能构成方程通解的充分条件是().
随机试题
脊髓中的交感神经低级中枢是
劳动者张某与某用人单位签订的劳动合同中约定的工资为3000元,则张某在试用期的工资不得低于()元,并不得低于用人单位所在地的最低工资标准。
马钱子炮制后内服的用量范围是
引起皮肤烫伤样综合征的微生物是
患者,男,23岁。3天前,不甚被篮球撞到胸胁部,现胁肋刺痛,痛有定处,痛处拒按,入夜痛甚,胁肋下有癥块,舌质紫暗,脉象沉涩。该患者治疗时,宜首选
证的含义是
《温病条辨》中所谓的“辛凉平剂”是指桑菊饮。()
随着改革开放,许多外国人在中国居住生活,为体现公务员录用的平等、竞争、择优的原则,有关法律规定在公务员录用上,不应因国籍问题受到歧视。()
Relativitytheoryhashadaprofoundinfluenceonourpictureofmatterbyforcingustomodifyourconceptofaparticleinan
Obama’sSuccessIsn’tAllGoodNewsforBlackAmericansA)AsErinWhitewatchedtheelectionresultsheadtowardsvictoryf
最新回复
(
0
)