首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明=(n+1)an.
证明=(n+1)an.
admin
2017-10-21
36
问题
证明
=(n+1)a
n
.
选项
答案
本题以证明题的形式出现,容易诱导想到用数学归纳法.记此行列式为D
n
,对第1行展开,得递推公式 D
n
=2aD
n-1
一a
2
D
n-2
. 用数列技巧计算. D
n
=2aD
n-1
—a
2
D
n-2
改写为D
n
一aD
n-1
=a(D
n-1
—aD
n-2
),记H
n
=D
n
一aD
n-1
(n≥2),则n≥3时H
n
=aH
n-1
,即{H
n
}是公比为a的等比数列.而H
2
=D
2
一aD
1
=3a
2
一2a
2
=a
2
,得到H
n
=a
n
,于是得到一个新的递推公式D
n
=aD
n-1
+a
n
,两边除以a
n
,得D
n
/a
n
=D
n-1
/a
n-1
+1.于是{D
n
/a
n
}是公差为1的等差数列.D
1
/a=2,则D
n
/a
n
=n+1,D
n
=(n+1)a
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/rdH4777K
0
考研数学三
相关试题推荐
证明:
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设A,B皆为n阶矩阵,则下列结论正确的是().
计算行列式
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
已知A,B为3阶相似矩阵,λ1=1,λ2=2为A的两个特征值,|B|=2,则行列式=________.
设A是n阶矩阵,A*是A的伴随矩阵,若|A|=a,则行列式等于().
设A为三阶实对称矩阵,且存在可逆矩阵P=,使得p-1AP=.又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)-1;(3)计算行列式|A*+E|.
已知A,B为三阶矩阵,且有相同的特征值1,2,2,则下列命题:①A,B等价;②A,B相似;③若A,B为实对称矩阵,则A,B合同;④行列式|A一2E|=|2E—A|中;命题成立的有().
随机试题
人体的触电方式分()两种。
血液透析常见的并发症除外()
大便出血,同时伴有黏液,呈持续性,肛门坠胀.多为
某药材多分枝,常弯曲,集聚成簇,形如鸡爪。与该药材名称相同,弯曲呈钩状,多为单枝,较细小的是()。
关于阴道前庭的解剖结构正确的是
不属于专利权主体的是下列的( )。
选择债券指数化投资的原因不包括()。
下列事项中,可能表明内部控制存在重大缺陷的有()。
2020年9月3日,中共中央、国务院、中央军委在北京人民大会堂举行座谈会,纪念中国人民抗日战争暨世界反法西斯战争胜利75周年。习近平出席座谈会并发表重要讲话强调,中国人民在抗日战争的壮阔进程中孕育出伟大抗战精神,向世界展示了天下兴亡、匹夫有责的爱国情怀,视
我们刚刚吃过午饭。
最新回复
(
0
)