首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【 】
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【 】
admin
2019-03-11
96
问题
设向量组Ⅰ:α
1
,α
2
,…,α
r
可由向量组Ⅱ:β
1
,β
2
,…,β
s
线性表示.下列命题正确的是【 】
选项
A、若向量组Ⅰ线性无关,则r≤s.
B、若向量组Ⅰ线性无关,则r>s.
C、若向量组Ⅱ线性无关,则r≤s.
D、若向量组Ⅱ线性无关,则r>s.
答案
A
解析
解1 由于(Ⅰ)可由(Ⅱ)线性表示,所以有r(Ⅰ)≤r(Ⅱ),而r(Ⅱ)≤S,当(Ⅰ)线性无关时,就有r=r(Ⅰ)≤r(Ⅱ)≤S,所以选项(A)正确.
解2 设V是由向量组(Ⅱ)生成的向量空间,则V的维数≤S,由条件知
,当(Ⅰ)线性无关时,V的维数≥r,故有r≤S,从而知选项(A)正确.
本题考查向量组的线性相关性与向量组的秩的关系、线性表示问题与向量组的秩的关系及有关性质.本题结论在不少教材中都是作为一个定理给出的(例如:魏战线编《线性代数与解析几何》,高等教育出版社,2004年7月第1版,第147页,定理4.3.1),这是关于向量组之阀线性关系的一个基本性质.
转载请注明原文地址:https://kaotiyun.com/show/rkP4777K
0
考研数学三
相关试题推荐
求下列函数的导数与微分:
设α1,α2,…,αm均为n维实列向量,令矩阵证明:A为正定矩阵的充分必要条件是向量组α1,α2,…,αm线性无关.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也不可用α1,α2
设A,B都是n阶矩阵,使得A+B可逆,证明B(A+B)一1A=A(A+B)一1B.
若级数(x一a)n当x>0时发散,而当x=0时收敛,则常数a=________.
设D1是由曲线y=和直线y=a及x=0所围成的平面区域;D2是由曲线y=和直线y=a及x=1所围成的平面区域,其中0<a<1.(Ⅰ)试求D1绕x轴旋转而成的旋转体体积V1;D2绕y轴旋转而成的旋转体体积V2(如图3.8);(Ⅱ)问当a为
将一枚骰子重复掷n次,则当n→∞时,n次掷出点数的算术平均值依概率收敛于________.
设z=f(x,y),x=g(y,z)+,其中f,g,φ在其定义域内均可微,求
随机试题
解释下列句子中划线的词语将有西师过轶我。
肾小球滤过率是指每分钟()。
关于毒品犯罪,下列哪些选项是正确的?(2010年卷二60题)
死刑可以缓期()年执行。
一项有效的承诺,必须由受要约人向要约人提出;且应符合()。
当前,我们该如何坚持以科学发展观统领经济社会发展全局?
Thenexttimethemenweretakenupontothedeck,Kuntamadeapointoflookingatthemanbehindhiminline,theonewholaid
以下是一场关于“安乐死是否应合法化”的辩论中正反方辩手的发言:正方:反方辩友反对“安乐死合法化”的根据主要是在什么条件下方可实施安乐死的标准不易掌握,这可能会给医疗事故甚至谋杀造成机会,使一些本来可以挽救的生命失去最后的机会。诚然,这样的风险是存在
TheEconomistcalculatesthataroundtheworldalmost290million15-to24-year-oldsareneitherworkingnorstudying:almosta
Therecentsurgeinoilpricestoroughly$55abarrelteachessomeusefullessons.Oneisthatsurpriseshappen.Ayearagofut
最新回复
(
0
)