首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充分必要条件是( ).
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充分必要条件是( ).
admin
2020-06-05
27
问题
n维向量组α
1
,α
2
,…,α
s
(3≤s≤n)线性无关的充分必要条件是( ).
选项
A、存在一组不全为0的数k
1
,k
2
,…,k
s
,使k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0
B、α
1
,α
2
,…,α
s
中任意两个向量都线性无关
C、α
1
,α
2
,…,α
s
中存在一个向量,它不能用其余向量线性表处
D、α
1
,α
2
,…,α
s
中任意一个向量都不能用其余向量线性表示
答案
D
解析
方法一
因为α
1
,α
2
,…,α
s
线性相关的充分必要条件是至少存在一个向量可以由其余s-1个向量线性表示.而其逆否命题:向量组α
1
,α
2
,…α
s
中任意一个向量都不能用其余向量线性表示的充分必要条件是向量组α
1
,α
2
,…,α
s
线性无关.由此知,选项(D)是向量组线性无关的充分必要条件.
方法二
因为向量组α
1
,α
2
,…,α
s
线性无关的充分必要条件之一是齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解,而该齐次线性方程组只有零解则表示由该向量方程无法解出任何一个向量(因为0不能做分母),亦即其中任何一个向量均不能由其余的向量线性表示,以此推知(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/ryv4777K
0
考研数学一
相关试题推荐
设随机变量X与Y相互独立,其分布函数分别为FX(x)与FY(y),则Z=max{X,Y}的分布函数FZ(z)是
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
要使ξ1=(1,0,2)T,ξ2=(0,1,-1)T都是齐次线性方程组AX=0的解,只要系数矩阵为()
设的一个特征向量.矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
(2011年试题,一)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵,记则A=().
已知n阶方阵A满足矩阵方程A2一3A一2E=O证明:A可逆,并求出其逆矩阵A-1.
已知随机变量X的概率密度为f(χ)=Aeχ(B-χ)(-∞<χ<+∞),且E(X)=2D(X),试求:(Ⅰ)常数A,B之值;(Ⅱ)B(X2+eX);(Ⅲ)Y=|(X-1)|的分布函数F(y).
[2002年]设A,B为同阶矩阵.举一个二阶方阵的例子说明第一题的逆命题不成立;
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
随机试题
根据计划内容的明确性标准,可以将计划分类为()
A.刺激外周化学感受器B.刺激中枢化学感受器C.直接刺激脑桥呼吸调整中枢D.直接兴奋呼吸中枢E.直接抑制呼吸动脉血中PCO2升高时,引起呼吸加强的主要机制是()
A.上腹部包块B.肌紧张反跳痛C.胸腹腔积液D.腹壁皮下青紫E.假性肠梗阻急性胰腺炎较严重的表现是
A.近端小管B.髓袢降支细段C.髓袢升支细段D.髓袢升支粗段E.远曲小管和集合管小管液中Cl-被继发性主动转运的部位是
根据税收征收管理法律制度的规定,下列属于税务代理委托协议应包含的内容有()。
管理制度的制定要求是什么?
Whenanyoneopensacurrentaccountatabank,heislendingthebankmoney.Hemay(1)_____therepaymentofthemoneyatanyt
允许在转储过程中对数据库进行存取和修改,但不能保证备份数据有效性的数据转储类型是______。
Davidisstillinhighschool.Whenhe______,hewantstogotocollege.
TVLinkedtoLowerMarksA)Theeffectoftelevisiononchildrenhasbeendebatedeversincethefirstsetswereturnedon.Nowt
最新回复
(
0
)