首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充分必要条件是( ).
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充分必要条件是( ).
admin
2020-06-05
51
问题
n维向量组α
1
,α
2
,…,α
s
(3≤s≤n)线性无关的充分必要条件是( ).
选项
A、存在一组不全为0的数k
1
,k
2
,…,k
s
,使k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0
B、α
1
,α
2
,…,α
s
中任意两个向量都线性无关
C、α
1
,α
2
,…,α
s
中存在一个向量,它不能用其余向量线性表处
D、α
1
,α
2
,…,α
s
中任意一个向量都不能用其余向量线性表示
答案
D
解析
方法一
因为α
1
,α
2
,…,α
s
线性相关的充分必要条件是至少存在一个向量可以由其余s-1个向量线性表示.而其逆否命题:向量组α
1
,α
2
,…α
s
中任意一个向量都不能用其余向量线性表示的充分必要条件是向量组α
1
,α
2
,…,α
s
线性无关.由此知,选项(D)是向量组线性无关的充分必要条件.
方法二
因为向量组α
1
,α
2
,…,α
s
线性无关的充分必要条件之一是齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解,而该齐次线性方程组只有零解则表示由该向量方程无法解出任何一个向量(因为0不能做分母),亦即其中任何一个向量均不能由其余的向量线性表示,以此推知(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/ryv4777K
0
考研数学一
相关试题推荐
设A,B均是3阶非零矩阵,满足AB=O,其中则()
设A、B为任意两个事件,且AB,P(B)>0,则下列选项必然成立的是()
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
α1,α2,α3,β1,β2均为4维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
曲线y=的切线与x轴和y由围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积,当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
已知n阶方阵A满足矩阵方程A2一3A一2E=O证明:A可逆,并求出其逆矩阵A-1.
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求:V=|X—Y|的概率密度fV(v)。
随机试题
下列哪项不是失眠的病因
急性左心功能不全时,吸氧宜选用
可出现嗜酸性粒细胞减少的疾病是()
所有财政活动都体现着()与其他经济主体之间的经济关系,这种经济关系在不同的社会制度下具有不同的性质。
例三:假设资本资产定价模型成立,相关证券的风险与收益信息如表2-5所示。(注:表中的数字是相互关联的)根据案例三,回答下列题目:根据资本资产定价模型理论(CAPM)的建议,一个资产分散状况良好的投资组合,最容易受( )因素的影响。
()是物流系统的两大支柱,物流过程中其他各环节的活动都是围绕着这两个环节而进行的。
在物流系统的生产经营活动中,属于变动成本的项目是()
每日膳食营养素供给量(RDAs)
遗忘的进程一般是()
InanefforttomakeupforsomeoftheglaringlimitationsofIQtests,researchershavebeguntodevelopnewwaystomeasuret
最新回复
(
0
)