首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C,D都是,n阶矩阵,r(CA+DB)=n. (1)证明:r=n; (2)设ξ1,ξ2,……,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明: ξ1,ξ2,……,ξr,η1,η2,…,ηs线性无关.
设A,B,C,D都是,n阶矩阵,r(CA+DB)=n. (1)证明:r=n; (2)设ξ1,ξ2,……,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明: ξ1,ξ2,……,ξr,η1,η2,…,ηs线性无关.
admin
2022-04-02
88
问题
设A,B,C,D都是,n阶矩阵,r(CA+DB)=n.
(1)证明:r
=n;
(2)设ξ
1
,ξ
2
,……,ξ
r
与η
1
,η
2
,…,η
s
分别为方程组AX=0与BX=0的基础解系,证明:
ξ
1
,ξ
2
,……,ξ
r
,η
1
,η
2
,…,η
s
线性无关.
选项
答案
[*] 从而方程组AX=0与BX=0没有非零的公共解,故ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/s1R4777K
0
考研数学三
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内三阶可导,且.证明:存在ξ∈(0,2),使得f’’’(ξ)=9.
没向量组(I):a1,a2,…,an(Ⅱ):a1,a2,…,an-1则必有().
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
已知下列非齐次线性方程组:当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
证明:若A为n阶方阵,则有|A*|=|(-A)*|(n≥2).
随机试题
设f(x)在[a,b]上连续,x0是(a,b)内任一定点,则=________。
A.胃窦和十二指肠B.十二指肠和空肠C.食管D.小肠下段促胃液素的主要分泌部位是
男性,40岁,发现心脏杂音2年,患者出现下列哪项改变对明确风湿性心脏病的诊断最有价值
噻嗪类利尿药长期服用应防止氨苯蝶啶长期服用需防止
()用于衡量和防御银行实际承担的损失超过预计损失的那部分损失,是防止银行倒闭的最后防线。
衡量一台计算机优劣的主要技术指标通常是指()。
Women’sfertilityisdeterminedinlargepartatbirth.Theyarebornwiththeirtotalnumberofreproductivecells,whichnorma
将单位内部的局域网接入Internet(因特网)所需使用的接入设备是______。
有以下程序 #include<stdio.h> main() { FILE*fp;int i,k=0,n=0; fp=fopen("d1.dat","w"); for(i=1;1<4;i++) fprintf(fp,"%d",i); fclose(fp);
有两个关系R和S如下图所示:由关系R通过运算得到关系S,则所使用的运算为
最新回复
(
0
)