首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
admin
2018-06-27
35
问题
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
选项
答案
对齐次方程组(Ⅰ)ABx=0,(Ⅱ)Bx=0, 如α是(Ⅱ)的解,有Bα=0,那么ABα=0,于是α是(Ⅰ)的解. 如α是(Ⅰ)的解,有ABα=0,因为A是m×n矩阵,秩r(A)=n,所以Ax=0只有零解,从而Bα=0.于是α是(Ⅱ)的解. 因此方程组(Ⅰ)与(Ⅱ)同解.那么s-r(AB)=s-r(B),即r(AB)=r(B). 所以r(B)=r(C).
解析
转载请注明原文地址:https://kaotiyun.com/show/s4k4777K
0
考研数学二
相关试题推荐
试证明:当x>0时θ(x)为单调增加函数且
微分方程yy’’一(y’)2=0满足y(0)=1与y’(0)=1的特解是_________.
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求秩r(A+E).
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中求(A一3E)6.
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3证明:α,Aα,A2α线性无关;
已知又矩阵A和B相似,A*是A的伴随矩阵,则|A*+3E|=__________.
求直线绕z轴旋转而成的旋转曲面方程,并问a、b不同时为零时,该曲面为何种曲面?
设有8只球,其中自球和黑球各4只,从中任取4只放人甲盒,余下的4只放入乙盒,然后分别在两盒中任取1只球,颜色正好相同.试问放人甲盒的4只球中有几只白球的概率最大?
随机试题
Hissuccessdoesn’t______hiscleverness.Hardworking______progress.
患者,女,45岁。月经不规律8个月,现阴道出血40天,量时多时少,近3天量极多、色淡、质稀,伴气短神疲,面浮肢肿,舌淡苔薄白,脉缓弱。治疗应首选
在()组织结构中,每一个工作部门同样只有唯一的一个上级领导或上级部门,即上下级之间是直线型的领导与被领导的权责关系,一级服从一级,上级工作部门在所管辖的范围内对直接下级具有直接的指挥权,下级部门必须绝对服从。
—WillyoujoinustoplaybasketballonSaturdayafternoon?—______,butIpromisedtogoswimmingwithEric.
Totheaveragepersonknowledgeitselfisofimportancebecauseofitsbearinguponwhatheneedstodoandtomake.Ithelpshi
“新教育运动”是19世纪末20世纪初在()兴起的教育改革运动。
SQL语言集数据定义功能、数据操纵功能和数据控制功能于一体。在如下所列语句中,哪一个是属于数据控制功能的?
确定一个窗体大小的属性是( )。
Althoughmanyofusmayfeelair-conditionersbringrelieffromhot,humidorpollutedoutsideair,theyposemanypotentialhea
Gettingauniversitydegreeisn’tjustgoodforyourmind—itsgoodtoryourheart,saysanewstudyinthejournalBMC(British
最新回复
(
0
)