首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
admin
2018-06-27
55
问题
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
选项
答案
对齐次方程组(Ⅰ)ABx=0,(Ⅱ)Bx=0, 如α是(Ⅱ)的解,有Bα=0,那么ABα=0,于是α是(Ⅰ)的解. 如α是(Ⅰ)的解,有ABα=0,因为A是m×n矩阵,秩r(A)=n,所以Ax=0只有零解,从而Bα=0.于是α是(Ⅱ)的解. 因此方程组(Ⅰ)与(Ⅱ)同解.那么s-r(AB)=s-r(B),即r(AB)=r(B). 所以r(B)=r(C).
解析
转载请注明原文地址:https://kaotiyun.com/show/s4k4777K
0
考研数学二
相关试题推荐
下列矩阵中属于正定矩阵的是
过原点作曲线的切线L,该切线与曲线及y轴围成平面图形n.求切线L的方程.
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求曲线L与x轴所围图形绕Oy轴旋转一周所成旋转体的体积V;
已知A*是A的伴随矩阵,则=__________.
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求正交变换x=Qy化二次型为标准形.并写出所用坐标变换.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
设方程y3+sin(xy)一e2x=0确定曲线y=y(x).求此曲线y=y(x)在点(0,1)处的曲率与曲率半径.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的1/8,求全部融化需要的时间.
随机试题
下列关于四种必需资源说法正确的是()。
拐卖妇女、儿童罪的主观方面【】
在Access2010中没有各种各样的控件。()
原发性肺结核最常见的自然演变结局是
甲公司2009年5月14日获得一项外观设计专利,乙公司未经许可,以生产经营目的制造该专利产品。丙公司未经甲公司许可,以生产经营目的所为的下列行为中,不构成侵权行为的是()。
经纬仪主要由()组成。
银行业外部监管由()统一监管金融机构。
若某笔银行贷款的年名义利率为i,按年、半年、季计息的年实际利率分别为J、I1、I2,其从大到小的顺序是()。
请根据表5-6中的数据,完成该项目的单代号网络图,以表明各活动之间的逻辑关系。各工作节点用如图5-3所示的样图标识。图例说明:ES:最早开始时间EF:最早结束时间DU:作业历时ID:作业代号LS:最迟
TheBestWaytoReduceYourWeightYouhearthis:"NoWonderyouarefat.Allyoueverdoiseat."Youfeelsad:"Iskipmy
最新回复
(
0
)