首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2018-05-21
67
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0,所以r(A
*
)-1,且r(A)=n-1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n-1个线性无关的解向量,而A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由α
2
,…,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示,故r(A)=r([*])=n-1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/s7r4777K
0
考研数学一
相关试题推荐
设a1,a2,…,am为正数(m≥2),则=_________。
设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t—2一f(x,y).证明对D内的任意分段光滑的有向简单闭曲线L,都有∮Lyf(x,y)dx一xf(x,y)dy=0.
设f(x,y)=3x+4y一ax2一2ay2一2bxy,试问参数a,b满足什么条件时,f(x,y)有唯一的极大值?(x,y)有唯一的极小值?
已知f(x)在[0,2]上连续,在(0,2)内二阶可导,且∫12f(x)dx=f(2).证:ε∈(0,2),使f’(ε)+f"(ε)=0.
(Ⅰ)设X1,X2,…,Xn是来自概率密度为的总体的样本,θ未知,求的最大似然估计值;(Ⅱ)设X1,X2,…,Xn是来自正态总体N(μ,1)的样本,μ未知,求θ=P{X>2)的最大似然估计值.
设随机变量X~N(0,σ2),Y~N(0,4σ2),且P{X≤1,Y≤一2)=则P{X>1,y>一2}=________.
设齐次线性方程组(Ⅰ)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(-1,2,2,1)T.试问a,b为何值时,(Ⅰ)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
设3阶矩阵A与B相似,λ1=1,λ2=-2是矩阵A的两个特征值,且矩阵B的行列式|B|=1,则行列式|A*+E|=________.
设总体X服从标准正态分布,(X1,X2,…,Xn)为总体的简单样本,则()
设A、B是两个随机事件,且0<P(A)<1,P(B)>0,P(B|A)=P(B|),则必有()
随机试题
在急性蜂窝织炎组织中,浸润的炎细胞是()(1997年)
下颌骨易发生骨折的薄弱部位不包括
男,40岁。饱餐后突发上腹刀割样疼痛2小时,腹痛初为剑突下,迅速波及全腹。查体:体温38.5℃,板状腹。最适宜的处理是
女性,20岁,多饮,多尿,消瘦3周,厌食,腹痛半天,血糖24.5mmol/L(441mg/dl)。酮症酸中毒纠正后,对本病例应给予的主要治疗是
A.α受体阻断药B.直接扩张血管药C.β受体阻断药D.交感末梢抑制药E.中枢性降压药胍乙啶属于
甲国公民吉某在中国法院进行民事诉讼的过程中对案件提出了管辖权异议。中国法院在市理过程中发现:对于中国公民在甲国法院进行的民事诉讼,甲国法院一律限制中国公民提出管辖权异议的权利。于是该受理案件的中国法院也限制吉某提出管辖权异议的权利。中国法院的做法体现了民事
下列资产负债表日后事项中,属于调整事项的有()。
债券的收益主要来源于()。
求齐次方程组的基础解系.
设有关系R、S和T如下。关系T是由关系R和S经过______操作得到的。RSTABCABCA
最新回复
(
0
)