已知随机变量X,Y的概率分布分别为P{X=一1}=,P{X=0}=,P{X=1}=,P{Y=0}=,P{Y=1} =,P{Y=2}=,并且P{X+Y=1}=1,求: (Ⅰ)(X,Y)的联合分布; (Ⅱ)X与Y是否独立?为什么?

admin2019-05-08  33

问题 已知随机变量X,Y的概率分布分别为P{X=一1}=,P{X=0}=,P{X=1}=,P{Y=0}=,P{Y=1} =,P{Y=2}=,并且P{X+Y=1}=1,求:
(Ⅰ)(X,Y)的联合分布;
(Ⅱ)X与Y是否独立?为什么?

选项

答案(Ⅰ)根据题设P{X+Y=1}=1,即P{X=一1,Y=2}+P{X=0,Y=1}+P{X=1,Y=0}=1,故其余分布值均为零,即P{X=一1,Y=0}=P{X=一1,Y=1}=P{X=0,Y=0}=P{X=0,Y=2}=P{ X=1,Y=1}=P{X=1,Y=2}=0,由此可求得联合分布为 [*] (Ⅱ)因为P{X=一1,Y=0}=0≠JP{X=一1}P{Y=0}=[*] 故X与Y不独立。

解析
转载请注明原文地址:https://kaotiyun.com/show/sEJ4777K
0

相关试题推荐
随机试题
最新回复(0)