首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )
admin
2019-01-14
42
问题
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )
选项
A、若Ax=0仅有零解,则Ax=b有唯一解。
B、若Ax=0有非零解,则Ax=b有无穷多个解。
C、若Ax=b有无穷多个解,则Ax=0仅有零解。
D、若Ax=b有无穷多个解,则Ax=0有非零解。
答案
D
解析
因为不论齐次线性方程组Ax=0的解的情况如何,即r(A)=n或r(A)<n,以此均不能推得
r(A)=r(A:b),
所以选项A、B均不正确。
而由Ax=b有无穷多个解可知,r(A)=r(A:b)<n。根据齐次线性方程组有非零解的充分必要条件可知,此时Ax=0必有非零解。所以应选D。
转载请注明原文地址:https://kaotiyun.com/show/sVM4777K
0
考研数学一
相关试题推荐
设A为n阶实对称矩阵,其秩为r(A)=r.举一个三阶矩阵说明对非对称矩阵上述命题不正确.
已知向量α1=[1,0,2,4]T,α2=[1,1,3,0]T,α3=[2,1,a+2,4-]T,α4=[2,-1,3,a+7]T,β1=[3,-1,a+6,a+11]T,β2=[0,1,2,a]T.若β1可由α1,α2,α3,α4线性表示,β2不能由α1
设A,B都是三阶方阵,满足AB=A-B,若λ1,λ2,λ3是A的三个不同特征值,证明:存在可逆阵C,使C-1AC,CBC-1同时为对角矩阵.
已知线性方程组AX=β存在两个不同的解.①求λ,a.②求AX=β的通解.
设二维连续型随机变量(X,Y)在区域D={(x,y)|0≤y≤x≤3一y,y≤1}上服从均匀分布,求边缘密度fX(x)及在X=x条件下,关于Y的条件概率密度.
设X1,X2,…,X9是来自总体X~N(μ,4)的简单随机样本,而是样本均值,则满足=0.95的常数μ=________.(ψ(1.96)=0.975)
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1一θ)2,EX=2(1一θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
以下命题正确的是().
设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解是()
随机试题
A、ThefreezingweatherinBrazil.B、Theincreasedcoffeeconsumption.C、Theimpactofglobalwarming.D、Thefluctuationofcoffe
女,45岁,发热、咳脓痰1周,胸片示右下背段浸润阴影。用青霉素治疗体温稍下降,但痰量增多,为脓血痰,有臭味。胸片大片浸润阴影中出现空腔。治疗中需加用
放置T形管引流时,提示胆道远端通畅的是
关于白细胞核左移,下列叙述哪项较为确切()
自古以来,中国人就有饮茶的习惯,国内较早关于茶叶的研究来自唐代陆羽的《茶经》,茶叶按其制作工艺可以分为不发酵、半发酵和完全发酵茶。以下属于半发酵茶的是:
请计算99999×22222+33333×33334的值。( )
八路军:百团大战
根据所给材料回答问题。2010年,我国医院总数为20918家,较上年增长627家,医院接待诊疗20.40亿人次,比上年增长1.18亿人次。综合医院接待诊疗人次占全部医院接待诊疗人次的74.1%,是位居第二的中医医院诊疗人次的4.6倍。20
有如下类定义:classMyClass{public:MyClass(constchar*c=NULL);~MyClass();___
在窗体上画一个命令按钮,然后编写如下程序:Functionfun(ByValnumAsLong)AsLongDimkAsLongk=1num=Abs(num)Do
最新回复
(
0
)