首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y21+y22,且Q的第3列为 求矩阵A;
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y21+y22,且Q的第3列为 求矩阵A;
admin
2021-02-25
59
问题
已知二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
2
1
+y
2
2
,且Q的第3列为
求矩阵A;
选项
答案
由题设知A的特征值为1,1,0.且α=(1,0,1)
T
是属于A的特征值0对应的一个特征向量.设x=(x
1
,x
2
,x
3
)
T
为A的属于特征值1的特征向量,由于A的不同的特征值所对应的特征向量正交,所以有(x,α)=0,即x
1
+x
3
=0,解该方程组的基础解系ξ
1
=(1,0,-1)
T
,ξ
2
=(0,1,0)
T
,将其单位化,并将其取为A的属于特征值1对应的正交单位的特征向量, [*] 令 [*] 从而, [*]
解析
本题考查抽象二次型化标准形的逆问题,由正交变换下的标准形与二次型对应的矩阵A的特征值的关系,求A.再由正定矩阵的定义判定A+E的正定性.
转载请注明原文地址:https://kaotiyun.com/show/se84777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
已知矩阵A=有3个线性无关的特征向量,λ=2是A的2重特征值.试求可逆矩阵P,使P-1AP成为对角矩阵.
求星形线的质心,其中a>0为常数.
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设g(x)在x=0的某邻域内连续,且,又设f(x)在该邻域内存在二阶导数,且满足x2f”(x)-[f’(x)]2=xg(x),则()
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
n阶行列式=_______。
若二次型f(x1,x2,x3)=2x12+x32+x22+2x1x2+tx2x3是正定的,则t的取值范围是_______。
下列二元函数在点(0,0)处可微的是
随机试题
若X~N(-1,4),则X的概率密度为__________.
甲公司与乙公司达成协议,约定由乙公司按照甲公司的要求制作一批有甲公司标识的公司10周年年庆的礼品。乙公司因生产任务繁重,为保证按期交货,未经甲公司许可私下委托丙公司制作。因丙公司未按期完成制作任务,致使乙公司未能按期向甲公司交付该批礼品。根据上述
______Ifixedtheplugproperly,Istillgotanelectricshock.
患者李某,女性,27岁,G1P0,妊娠36+5周,由于骑车,被撞到,当时觉腹部不适,无阴道流血,急症就诊。查体:血压90/60mmHg,脉搏92bpm,胎儿心率:160次/分。此时合适的处理有
患者,女性,24岁。长期口角糜烂,最可能缺乏的营养素是
下列哪种事实会发生不当得利之债?
新增资源消耗主要包括()和()。
下面有关Applet的执行的说法不正确的是______。
Juliaconfirmingdinneron(1)______.
TheMarriageContractAmarriageisacontract.Youcaneitherwritethatcontractyourselforchoosebetweentwoprefabricat
最新回复
(
0
)