首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA: (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA: (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2022-04-07
100
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
(1)AB=BA:
(2)存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
(1)由AB=A-B得A-B-AB+E=E,(E+A)(E-B)=E, 即E-B与E+A互为逆矩阵,于是(E-B)(E+A)=E=(E+A)(E-B), 故AB=BA. (2)因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), 于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论哪种情况,B都可以对角化,而且 ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/t1R4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn(n>2)为来自总体N(0,σ2)的简单随机样本,其样本均值为(I)求Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)求Y1与Yn的协方差cov(Y1,Yn);(Ⅲ)若c(Y1+Yn)2是σ2的无偏估计量,求常数c.
a≠b
5/9.
A、 B、 C、 D、 D
求不定积分
设函数f(x)在[0,1]上连续.证明:∫01ef(x)dx∫01e-f(y)dy≥1.
已知下列非齐次线性方程组:当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.(1)求A的全部特征值;(2)当k为何值时,A+kE为正定矩阵?
如图,C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P分别引平行于x轴和y轴的直线,得两块阴影所示区域A,B,它们有相等的面积,设C的方程是y=x2,C1的方程是y=x2,求曲线C2的方程.
设函数f(x)在x=1的某邻域内连续,且有若又设f’’(1)存存,求f’’(1).
随机试题
A、By10:00am.B、By9:00am.C、By8:30am.D、By8:00am.B对话中女士解释她迟到的原因是住的太远了,而且交通很糟糕;男士回答他知道,他也住在郊区,但是公司要求员工早上九点上班。由此可知,公司要求员工早
女性,48岁,5年前患右上肺结核,痰菌阳性,经异烟肼、链霉素和乙胺丁醇治疗6个月,痰菌转阴,病灶明显吸收,自行停药,未再随访。近1个月来感乏力,2天前起咳嗽,痰中带血就诊。X线胸片示右上肺大片密影,边缘不清,密度不均,高密度病灶部分隐约见有钙化。侧位病变位
抢救严重有机磷酸酯类中毒,应当使用
普萘洛尔治疗心绞痛的主要药理作用是
根据《建设工程监理范围和规模标准规定》的要求,不是必须实行监理的是()。
缔约过失责任的构成必须具备的条件包括( )。
李某原为甲股份有限公司的监事,2008年3月1日跳槽到乙公司任总经理,则李某所持有甲公司的股份在( )之前不得转让。
《中华人民共和国未成年人保护法》规定,国家对未成年人实行()与保护相结合的原则。
根据下列材料回答问题。我国近岸海域面积为279225平方千米,2010年,按照监测点位计算,水质良好的一、二类海水占62.7%.比上年下降10.2个百分点;三类海水占14.1%,比上年上升8.1个百分点;四类和劣四类海水占23.2%,比上年上升2
DothefollowingstatementsagreewiththeinformationgiveninReadingPassage1?WriteTRUEifthestatementagreeswiththe
最新回复
(
0
)