首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求齐次线性方程组的基础解系.
求齐次线性方程组的基础解系.
admin
2019-01-05
63
问题
求齐次线性方程组
的基础解系.
选项
答案
解一 用高斯消元法求之.对系数矩阵进行初等行变换化为行阶梯形矩阵 [*] 由非零行的第1个非零元素所在的列可知x
1
,x
2
,x
3
为独立变量,x
2
,x
3
为自由变量,则用自由变量表示的独立变量的等价方程组为 [*] 令x
2
=1,x
3
=0,代入方程组①得到解向量[x
1
,x
2
,x
3
,x
4
,x
5
]=[-1,1,0,0,0]
T
=α
1
. 令x
2
=0,x
5
=1,代入方程组①得到另一解向量[x
1
,x
2
,x
3
,x
4
,x
5
]
T
=[-1,0,-1,0,1]
T
=α
2
,该方程组的一个基础解系为 α
1
=[-1,1,0,0,0]
T
, α
2
=[-1,0,-1,0,1]
T
. 解二 用简便求法求之.为此,用初等行变换将A化成含最高阶单位矩阵的矩阵,即 [*] 其中A
1
已是含最高阶(三阶)单位矩阵的矩阵,而且含有2个三阶单位矩阵,第一个是在第1,2,3行,第1,3,4列;第2个是在第1,2,3行,第2,3,4列.为方便计,取第1个单位矩阵计算.除单位矩阵所在的列以外,A
1
中还有两列,因而一个基础解系含有2个解向量α
1
,α
2
.因第1个单位矩阵在第1,3,4列,故α
1
,α
2
的第1,3,4个元素分别为第2列、第5列的前3个元素反号, 即 α
1
=[-1,a
12
,-0,-0,a
15
]
T
=[-1,a
12
,0,0,a
15
]
T
, α
2
=[-1,a
22
,-1,-0,a
25
]
T
=[-1,a
22
,-1,0,a
25
]
T
. 而α
1
与α
2
中的第2、5个元素a
ij
(i=1,2;j=2,5)依次组成二阶单位矩阵[*]即α
1
=[-1,1,0,0,0]
T
,α
2
=[-1,0,-1,0,1]
T
为所求的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/t4W4777K
0
考研数学三
相关试题推荐
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令求:(I)D(Y),D(Z);(Ⅱ)ρYZ.
设三阶矩阵A的特征值为一2,0,2,则下列结论不正确的是().
转化为适当的函数极限.令[*],则[*]
设总体X和y相互独立,分别服从N(μ,σ12),N(μ,σ22).X1,X2,…,Xm和Y1,Y2,…,Yn是分别来自X和Y的简单随机样本,其样本均值分别为,样本方差分别为SX2,SY2.令求EZ.
设A*是A的伴随矩阵,则A*x=0的通解是__________.
计算累次积分
设二维随机变量(X,Y)的联合密度函数为试求:(I)数学期望EX,EY,;(Ⅱ)方差DX,DY;(Ⅲ)协方差COV(X,Y),D(5X一3Y).
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵.现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
已知,则秩r(AB+2A)=__________。
设y=f(x)与y=∫arcsinx0et2+1dt在(0,0)点有相同的切线,则=()
随机试题
下列选项中,手术患者体位的安置要求包括()。
获得噪声源数据途径有()。
反映投资方案盈利能力的动态评价指标有()。
干粉灭火设备由()输气管、过滤器、球形阀、喷头、喷枪、干粉炮等组成。
在工程网络计划中,工作F的最早开始时间为第15天,其持续时间为5d。该工作有三项紧后工作,它们的最早开始时间分别为第24天、第26天和第30天,最迟开始时间分别为第30天、第30天和第32天,则工作F的总时差和自由时差()d。
传统的杜邦财务分析体系并不尽如人意,其局限性有()。
给定材料1.近几年,现金贷行业崛起,发展速度极快,盈利能力极强。Q公司靠校园贷起家,几年来的业绩呈爆发式增长,在现金贷行业算是一匹黑马。其招股书显示,Q公司2014年、2015年和2016年的收入分别为2410万元、2.35亿元和14.428亿
设f(χ)∈C[-π,π],且f(χ)=+∫-ππf(χ)sinχdχ,求f(χ).
在代码中定义了一个子过程:SubP(a,B)...EndSub下面______调用该过程的格式是正确的。
Theappearanceoftheusedcaris,it’smuchnewerthanitreallyis.
最新回复
(
0
)