首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):α1,…,αs线性表示为 (b1,… ,br)=(a1,… ,as)K, 其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):α1,…,αs线性表示为 (b1,… ,br)=(a1,… ,as)K, 其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
admin
2019-02-26
35
问题
设向量组(Ⅰ):b
1
,…,b
r
能由向量组(Ⅱ):α
1
,…,α
s
线性表示为
(b
1
,… ,b
r
)=(a
1
,… ,a
s
)K,
其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
选项
答案
必要性:令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组(Ⅰ):b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r。 又因为K为r×S阶矩阵,则有r(K)≤min{r,s}≤r。 综上所述r≤r(K)≤r,即r(K)=r。 充分性:已知r(K)=r,向量组(Ⅱ)线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使PA=[*],于是有PB=PAK=[*]。 由矩阵秩的性质 r(B)=r(PB)=[*]=r(K), 即r(B)=r(K)=r,因此向量组(Ⅰ)线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/tF04777K
0
考研数学一
相关试题推荐
计算(yz+xy2)dzdx+x2zdxdy,其中∑:取上侧.
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导,且满足若f(x,y)在D内没有零点,则f(x,y)在D上().
设矩阵不可对角化,则a=______.
设f(x)是以2π为周期的函数,当x∈[一π,π]时,f(x)=f(x)的傅里叶级数的和函数为S(x),则
设B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解.(I)求常数a,b.(Ⅱ)求BX=0的通解.
设A,B为满足AB=O的任意两个非零矩阵,则().
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则下列服从相应区间或区域上均匀分布的是
设函数u=u(x,y)满足及u(x,2x)=x,u’1(x,2x)=x2,u有二阶连续偏导数,则u’’11(x,2x)=()
在区间(0,1)中随机地取两个数,则这两数之差的绝对值小于的概率为________。
随机试题
邓小平指出,中国的经济发展第一条就是
INPUT标记的rIYPE属性的可能值有
来自正态总体且方差齐的多个独立样本均数比较时,通常采用的统计方法为
关于胎儿电子监测,提示胎儿缺氧的是
WHO健康权指
血液中哪种激素出现高峰可以作为排卵的标志
【背景资料】某炼油厂管道安装为一个独立的单位工程,进行分部工程验收时,发现热力管道有几个钢制固定支架的主要受力构件尺寸小于设计尺寸,经原设计单位核算不能满足使用要求。【问题】根据案例中固定支架问题,说明当分项工程质量不符合时应如何进行处理,处理后如
按照企业价值评估的市价/收入比率模型,以下四种不属于“收入乘数”驱动因素的是( )。
“组内异质,组间同质”体现了讨论式教学的()的注意事项。
Expertsinthefoodindustryarethinkingalotabouttrashthesedays.Foodwastehasbeenaseriousproblemforrestaurantsan
最新回复
(
0
)