首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):α1,…,αs线性表示为 (b1,… ,br)=(a1,… ,as)K, 其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):α1,…,αs线性表示为 (b1,… ,br)=(a1,… ,as)K, 其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
admin
2019-02-26
42
问题
设向量组(Ⅰ):b
1
,…,b
r
能由向量组(Ⅱ):α
1
,…,α
s
线性表示为
(b
1
,… ,b
r
)=(a
1
,… ,a
s
)K,
其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
选项
答案
必要性:令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组(Ⅰ):b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r。 又因为K为r×S阶矩阵,则有r(K)≤min{r,s}≤r。 综上所述r≤r(K)≤r,即r(K)=r。 充分性:已知r(K)=r,向量组(Ⅱ)线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使PA=[*],于是有PB=PAK=[*]。 由矩阵秩的性质 r(B)=r(PB)=[*]=r(K), 即r(B)=r(K)=r,因此向量组(Ⅰ)线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/tF04777K
0
考研数学一
相关试题推荐
计算(yz+xy2)dzdx+x2zdxdy,其中∑:取上侧.
设函数y=y(x)由xy=确定,则
设f(x)是以2π为周期的函数,当x∈[一π,π]时,f(x)=f(x)的傅里叶级数的和函数为S(x),则
椭球面∑1是椭圆L:绕x轴旋转而成,圆锥面∑2是由过点(4,0)且与椭圆L:相切的直线绕x轴旋转而成.(I)求∑1及∑2的方程;(Ⅱ)求位于∑1及∑2之间的立体体积.
设力f=2i一j+2k作用在一质点上,该质点从点M1(1,1,1)沿直线移动到点M2(2,2,2),则此力所做的功为()
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则下列服从相应区间或区域上均匀分布的是
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。(Ⅰ)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,利用(Ⅱ)的结果,证明α1,α2,
求不定积分
从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P{Y=2)=________。
随机试题
A.异烟肼B.利福平C.吡嗪酰胺D.乙胺丁醇(2015年第142题)对结核分枝杆菌B菌群作用最强的药物是
A.养血活血B.补血益气C.行气养血D.活血止痛E.活血化瘀,散寒止痛产后腹痛气血两虚证的治法是
在一段时间内,在一定数目的危险单位中,可能遭受的损失次数或程度,通常以分数或百分数来表示的是()。
北宋陵葬有北宋9个皇帝。()
对任意实数a、b、c,定义运算a*b*c=ab—bc+ca,若1*x*2=2,则x=()。
损益相抵[复旦大学2020年研]
Imagineaworldinwhichweareassignedanumberthatindicateshowinfluentialweare.Thisnumberwouldhelpdetermine【C1】___
“在课程关系COURSE中,增加一门课程:(‘C01’,‘电子商务’,‘陈伟钢’)。,用关系代数表达式表示为:COuRsE+_-COuRsEu{(‘C01’,‘电子商务’,‘陈伟钢’)}。这是使用扩展关系操作中的
A、Becauseheisinterestedinthesubject.B、Becausehehasalreadywrittenapaperonit.C、Becausehedoesnotknowanythinga
TheTruthabouttheEnvironmentA)Formanyenvironmentalists,theworldseemstobegettingworse.Theyhavedevelopedahit-lis
最新回复
(
0
)